Invariants
Base field: | $\F_{7}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x - 4 x^{2} + 7 x^{3} + 49 x^{4}$ |
Frobenius angles: | $\pm0.247407954773$, $\pm0.857771192050$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.42632.1 |
Galois group: | $D_{4}$ |
Jacobians: | $3$ |
Isomorphism classes: | 3 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $54$ | $2052$ | $130248$ | $6057504$ | $282999474$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $9$ | $41$ | $378$ | $2521$ | $16839$ | $118298$ | $820521$ | $5764369$ | $40335894$ | $282480641$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=3 x^6+6 x^5+3 x^4+4 x^2+4 x+1$
- $y^2=4 x^5+3 x^4+2 x+1$
- $y^2=x^6+5 x^5+x^4+3 x^3+3 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{7}$.
Endomorphism algebra over $\F_{7}$The endomorphism algebra of this simple isogeny class is 4.0.42632.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.7.ab_ae | $2$ | 2.49.aj_dw |