Properties

Label 2.7.b_ae
Base field $\F_{7}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
L-polynomial:  $1 + x - 4 x^{2} + 7 x^{3} + 49 x^{4}$
Frobenius angles:  $\pm0.247407954773$, $\pm0.857771192050$
Angle rank:  $2$ (numerical)
Number field:  4.0.42632.1
Galois group:  $D_{4}$
Jacobians:  $3$
Isomorphism classes:  3

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $54$ $2052$ $130248$ $6057504$ $282999474$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $9$ $41$ $378$ $2521$ $16839$ $118298$ $820521$ $5764369$ $40335894$ $282480641$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 4.0.42632.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.7.ab_ae$2$2.49.aj_dw