Properties

Label 4-80e2-1.1-c1e2-0-11
Degree $4$
Conductor $6400$
Sign $-1$
Analytic cond. $0.408069$
Root an. cond. $0.799251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 2·5-s − 2·7-s + 9-s − 3·11-s + 2·12-s − 4·13-s + 2·15-s + 4·16-s + 17-s − 7·19-s + 4·20-s + 2·21-s − 25-s − 4·27-s + 4·28-s + 4·29-s + 8·31-s + 3·33-s + 4·35-s − 2·36-s + 4·37-s + 4·39-s − 41-s − 2·43-s + 6·44-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 0.894·5-s − 0.755·7-s + 1/3·9-s − 0.904·11-s + 0.577·12-s − 1.10·13-s + 0.516·15-s + 16-s + 0.242·17-s − 1.60·19-s + 0.894·20-s + 0.436·21-s − 1/5·25-s − 0.769·27-s + 0.755·28-s + 0.742·29-s + 1.43·31-s + 0.522·33-s + 0.676·35-s − 1/3·36-s + 0.657·37-s + 0.640·39-s − 0.156·41-s − 0.304·43-s + 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(0.408069\)
Root analytic conductor: \(0.799251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 6400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T + p T^{2} ) \) 2.3.b_a
7$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.7.c_c
11$D_{4}$ \( 1 + 3 T + 16 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.11.d_q
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.13.e_be
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.17.ab_bc
19$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.19.h_bs
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.23.a_k
29$D_{4}$ \( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.29.ae_w
31$D_{4}$ \( 1 - 8 T + 50 T^{2} - 8 p T^{3} + p^{2} T^{4} \) 2.31.ai_by
37$D_{4}$ \( 1 - 4 T + 38 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.37.ae_bm
41$D_{4}$ \( 1 + T + 4 T^{2} + p T^{3} + p^{2} T^{4} \) 2.41.b_e
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.43.c_abi
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.47.g_dq
53$D_{4}$ \( 1 + 2 T - 38 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.53.c_abm
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.59.g_bu
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.61.ai_bm
67$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.67.ab_acy
71$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.71.ag_w
73$D_{4}$ \( 1 + 5 T + 56 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.73.f_ce
79$D_{4}$ \( 1 - 2 T + 146 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.79.ac_fq
83$D_{4}$ \( 1 + 3 T + 76 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.83.d_cy
89$D_{4}$ \( 1 - T + 76 T^{2} - p T^{3} + p^{2} T^{4} \) 2.89.ab_cy
97$D_{4}$ \( 1 - 4 T + 86 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.97.ae_di
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.3131008331, −17.1036324399, −16.4337953184, −15.9040248484, −15.4808331744, −14.8895353592, −14.5548680458, −13.6707732980, −13.2220529296, −12.7983409282, −12.2201819177, −11.9390372820, −11.0837292473, −10.4957358592, −9.84723348465, −9.67376148874, −8.61576094027, −8.11715945046, −7.62621960272, −6.73707427024, −6.08319164291, −5.16696703951, −4.56027875131, −3.89091353295, −2.74724723688, 0, 2.74724723688, 3.89091353295, 4.56027875131, 5.16696703951, 6.08319164291, 6.73707427024, 7.62621960272, 8.11715945046, 8.61576094027, 9.67376148874, 9.84723348465, 10.4957358592, 11.0837292473, 11.9390372820, 12.2201819177, 12.7983409282, 13.2220529296, 13.6707732980, 14.5548680458, 14.8895353592, 15.4808331744, 15.9040248484, 16.4337953184, 17.1036324399, 17.3131008331

Graph of the $Z$-function along the critical line