L(s) = 1 | − 3-s − 2·4-s − 2·5-s − 2·7-s + 9-s − 3·11-s + 2·12-s − 4·13-s + 2·15-s + 4·16-s + 17-s − 7·19-s + 4·20-s + 2·21-s − 25-s − 4·27-s + 4·28-s + 4·29-s + 8·31-s + 3·33-s + 4·35-s − 2·36-s + 4·37-s + 4·39-s − 41-s − 2·43-s + 6·44-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 4-s − 0.894·5-s − 0.755·7-s + 1/3·9-s − 0.904·11-s + 0.577·12-s − 1.10·13-s + 0.516·15-s + 16-s + 0.242·17-s − 1.60·19-s + 0.894·20-s + 0.436·21-s − 1/5·25-s − 0.769·27-s + 0.755·28-s + 0.742·29-s + 1.43·31-s + 0.522·33-s + 0.676·35-s − 1/3·36-s + 0.657·37-s + 0.640·39-s − 0.156·41-s − 0.304·43-s + 0.904·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.3131008331, −17.1036324399, −16.4337953184, −15.9040248484, −15.4808331744, −14.8895353592, −14.5548680458, −13.6707732980, −13.2220529296, −12.7983409282, −12.2201819177, −11.9390372820, −11.0837292473, −10.4957358592, −9.84723348465, −9.67376148874, −8.61576094027, −8.11715945046, −7.62621960272, −6.73707427024, −6.08319164291, −5.16696703951, −4.56027875131, −3.89091353295, −2.74724723688, 0,
2.74724723688, 3.89091353295, 4.56027875131, 5.16696703951, 6.08319164291, 6.73707427024, 7.62621960272, 8.11715945046, 8.61576094027, 9.67376148874, 9.84723348465, 10.4957358592, 11.0837292473, 11.9390372820, 12.2201819177, 12.7983409282, 13.2220529296, 13.6707732980, 14.5548680458, 14.8895353592, 15.4808331744, 15.9040248484, 16.4337953184, 17.1036324399, 17.3131008331