Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 17 x^{2} )( 1 + 2 x + 17 x^{2} )$ |
$1 - x + 28 x^{2} - 17 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.381477984739$, $\pm0.577979130377$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $21$ |
Isomorphism classes: | 138 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $300$ | $100800$ | $24292800$ | $6945120000$ | $2015933407500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $17$ | $345$ | $4946$ | $83153$ | $1419817$ | $24132510$ | $410319241$ | $6975985633$ | $118588574642$ | $2015989341225$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=5 x^6+2 x^5+5 x^4+15 x^3+6 x^2+15 x+3$
- $y^2=2 x^6+10 x^5+3 x^4+16 x^3+9 x^2+14 x+9$
- $y^2=5 x^6+2 x^5+13 x^4+2 x^3+14 x^2+5$
- $y^2=15 x^6+8 x^5+x^4+10 x^3+4 x^2+10 x$
- $y^2=5 x^6+4 x^5+6 x^4+2 x^3+3 x^2+11 x+10$
- $y^2=4 x^6+11 x^5+8 x^4+4 x^2+10 x+6$
- $y^2=6 x^6+4 x^5+9 x^4+16 x^3+2 x^2+x+2$
- $y^2=9 x^6+9 x^5+11 x^4+13 x^3+8 x^2+5 x+4$
- $y^2=5 x^6+16 x^5+7 x^4+5 x^3+16 x+4$
- $y^2=14 x^6+9 x^5+8 x^4+5 x^3+10 x+5$
- $y^2=9 x^6+12 x^5+4 x^4+16 x^3+6 x^2+14 x+6$
- $y^2=6 x^6+10 x^5+5 x^4+14 x^3+5 x^2+13 x+12$
- $y^2=15 x^5+10 x^4+15 x^3+9 x+7$
- $y^2=16 x^6+5 x^5+12 x^4+9 x^3+2 x^2+7 x+5$
- $y^2=7 x^6+2 x^5+14 x^4+14 x^3+9 x^2+6 x+9$
- $y^2=9 x^6+4 x^5+6 x^3+6 x^2+7 x$
- $y^2=4 x^6+16 x^5+5 x^2+2 x+16$
- $y^2=5 x^6+15 x^5+16 x^4+2 x^3+7 x^2+12 x+15$
- $y^2=9 x^6+15 x^5+4 x^4+10 x^3+6 x^2+13 x+14$
- $y^2=7 x^6+15 x^5+11 x^4+6 x^3+14 x^2+4 x+5$
- $y^2=6 x^6+8 x^5+15 x^4+14 x^3+16 x^2+15 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.ad $\times$ 1.17.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.