| L(s) = 1 | − 2·2-s − 3·3-s − 6·5-s + 6·6-s − 2·7-s + 4·8-s + 4·9-s + 12·10-s − 2·11-s − 2·13-s + 4·14-s + 18·15-s − 4·16-s − 6·17-s − 8·18-s + 6·21-s + 4·22-s − 2·23-s − 12·24-s + 18·25-s + 4·26-s − 6·29-s − 36·30-s − 6·31-s + 6·33-s + 12·34-s + 12·35-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 1.73·3-s − 2.68·5-s + 2.44·6-s − 0.755·7-s + 1.41·8-s + 4/3·9-s + 3.79·10-s − 0.603·11-s − 0.554·13-s + 1.06·14-s + 4.64·15-s − 16-s − 1.45·17-s − 1.88·18-s + 1.30·21-s + 0.852·22-s − 0.417·23-s − 2.44·24-s + 18/5·25-s + 0.784·26-s − 1.11·29-s − 6.57·30-s − 1.07·31-s + 1.04·33-s + 2.05·34-s + 2.02·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5547 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5547 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.8729368019, −17.4780977310, −16.8238626428, −16.4464822737, −15.9802273957, −15.8966001066, −14.9484426154, −14.7879696813, −13.3423691023, −13.0803935079, −12.3834323879, −11.8360583747, −11.5135334923, −10.7971801876, −10.7500404360, −9.76175813922, −9.20679535768, −8.51053708633, −7.86442320164, −7.51672561269, −6.82871744579, −5.96338923145, −4.74387622428, −4.49472027398, −3.47776319336, 0, 0,
3.47776319336, 4.49472027398, 4.74387622428, 5.96338923145, 6.82871744579, 7.51672561269, 7.86442320164, 8.51053708633, 9.20679535768, 9.76175813922, 10.7500404360, 10.7971801876, 11.5135334923, 11.8360583747, 12.3834323879, 13.0803935079, 13.3423691023, 14.7879696813, 14.9484426154, 15.8966001066, 15.9802273957, 16.4464822737, 16.8238626428, 17.4780977310, 17.8729368019