Properties

Label 4-5547-1.1-c1e2-0-2
Degree $4$
Conductor $5547$
Sign $1$
Analytic cond. $0.353681$
Root an. cond. $0.771175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s − 6·5-s + 6·6-s − 2·7-s + 4·8-s + 4·9-s + 12·10-s − 2·11-s − 2·13-s + 4·14-s + 18·15-s − 4·16-s − 6·17-s − 8·18-s + 6·21-s + 4·22-s − 2·23-s − 12·24-s + 18·25-s + 4·26-s − 6·29-s − 36·30-s − 6·31-s + 6·33-s + 12·34-s + 12·35-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s − 2.68·5-s + 2.44·6-s − 0.755·7-s + 1.41·8-s + 4/3·9-s + 3.79·10-s − 0.603·11-s − 0.554·13-s + 1.06·14-s + 4.64·15-s − 16-s − 1.45·17-s − 1.88·18-s + 1.30·21-s + 0.852·22-s − 0.417·23-s − 2.44·24-s + 18/5·25-s + 0.784·26-s − 1.11·29-s − 6.57·30-s − 1.07·31-s + 1.04·33-s + 2.05·34-s + 2.02·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5547 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5547 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5547\)    =    \(3 \cdot 43^{2}\)
Sign: $1$
Analytic conductor: \(0.353681\)
Root analytic conductor: \(0.771175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 5547,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 2 T + p T^{2} ) \)
43$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \) 2.2.c_e
5$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.5.g_s
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.7.c_o
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.11.c_h
13$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.13.c_l
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \) 2.17.g_br
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.19.a_bi
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.23.c_bv
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.g_cg
31$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.31.g_cp
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.37.ai_cw
41$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.41.c_bv
47$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.47.e_ck
53$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.53.c_dn
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.59.a_aba
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.61.g_ec
67$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 15 T + p T^{2} ) \) 2.67.s_gx
71$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.71.m_ek
73$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.73.ao_go
79$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.79.y_la
83$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \) 2.83.abe_pb
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.89.ag_fi
97$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 7 T + p T^{2} ) \) 2.97.as_kl
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.8729368019, −17.4780977310, −16.8238626428, −16.4464822737, −15.9802273957, −15.8966001066, −14.9484426154, −14.7879696813, −13.3423691023, −13.0803935079, −12.3834323879, −11.8360583747, −11.5135334923, −10.7971801876, −10.7500404360, −9.76175813922, −9.20679535768, −8.51053708633, −7.86442320164, −7.51672561269, −6.82871744579, −5.96338923145, −4.74387622428, −4.49472027398, −3.47776319336, 0, 0, 3.47776319336, 4.49472027398, 4.74387622428, 5.96338923145, 6.82871744579, 7.51672561269, 7.86442320164, 8.51053708633, 9.20679535768, 9.76175813922, 10.7500404360, 10.7971801876, 11.5135334923, 11.8360583747, 12.3834323879, 13.0803935079, 13.3423691023, 14.7879696813, 14.9484426154, 15.8966001066, 15.9802273957, 16.4464822737, 16.8238626428, 17.4780977310, 17.8729368019

Graph of the $Z$-function along the critical line