Properties

Label 2.61.g_ec
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 61 x^{2} )( 1 + 8 x + 61 x^{2} )$
  $1 + 6 x + 106 x^{2} + 366 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.459132412189$, $\pm0.671149895095$
Angle rank:  $2$ (numerical)
Jacobians:  $288$
Cyclic group of points:    no
Non-cyclic primes:   $2, 5$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4200$ $14515200$ $51385660200$ $191674028851200$ $713335012112625000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $68$ $3898$ $226388$ $13843438$ $844586948$ $51520247818$ $3142747676948$ $191707309734238$ $11694145680395588$ $713342913182487898$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.ac $\times$ 1.61.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.ak_fi$2$(not in LMFDB)
2.61.ag_ec$2$(not in LMFDB)
2.61.k_fi$2$(not in LMFDB)