Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 61 x^{2} )( 1 + 8 x + 61 x^{2} )$ |
| $1 + 6 x + 106 x^{2} + 366 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.459132412189$, $\pm0.671149895095$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $288$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4200$ | $14515200$ | $51385660200$ | $191674028851200$ | $713335012112625000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $3898$ | $226388$ | $13843438$ | $844586948$ | $51520247818$ | $3142747676948$ | $191707309734238$ | $11694145680395588$ | $713342913182487898$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=20 x^6+44 x^5+x^4+44 x^3+22 x^2+25 x+29$
- $y^2=44 x^6+26 x^5+28 x^4+39 x^3+13 x^2+36$
- $y^2=x^6+6 x^5+31 x^4+17 x^2+60 x+33$
- $y^2=29 x^5+41 x^4+16 x^3+5 x^2+36 x+51$
- $y^2=28 x^6+32 x^5+8 x^4+8 x^3+12 x^2+45 x+45$
- $y^2=43 x^6+50 x^5+8 x^4+14 x^3+8 x^2+50 x+43$
- $y^2=19 x^6+3 x^5+6 x^4+17 x^3+41 x^2+23 x+32$
- $y^2=58 x^6+53 x^5+17 x^4+15 x^3+54 x^2+42 x+38$
- $y^2=18 x^6+5 x^5+21 x^4+23 x^3+55 x^2+9 x+52$
- $y^2=32 x^6+47 x^5+11 x^4+46 x^3+13 x^2+37 x+58$
- $y^2=29 x^6+13 x^5+46 x^4+38 x^3+x^2+60 x+33$
- $y^2=58 x^6+39 x^5+37 x^4+46 x^3+51 x^2+49 x+7$
- $y^2=47 x^6+25 x^5+x^4+34 x^3+46 x^2+4 x+52$
- $y^2=20 x^6+36 x^5+13 x^4+54 x^3+26 x^2+55 x+41$
- $y^2=29 x^6+27 x^5+25 x^4+60 x^3+16 x^2+4 x+33$
- $y^2=45 x^6+38 x^5+4 x^4+37 x^3+31 x^2+28 x+34$
- $y^2=36 x^6+54 x^5+32 x^4+36 x^3+12 x^2+21 x+48$
- $y^2=50 x^6+48 x^5+30 x^4+34 x^3+9 x^2+52 x+45$
- $y^2=47 x^6+x^5+46 x^4+24 x^3+56 x^2+34 x+4$
- $y^2=13 x^6+33 x^5+54 x^4+4 x^3+33 x^2+5 x+14$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ac $\times$ 1.61.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ak_fi | $2$ | (not in LMFDB) |
| 2.61.ag_ec | $2$ | (not in LMFDB) |
| 2.61.k_fi | $2$ | (not in LMFDB) |