Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 37 x^{2} )( 1 + 37 x^{2} )$ |
| $1 - 8 x + 74 x^{2} - 296 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.271573428246$, $\pm0.5$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $64$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1140$ | $1992720$ | $2584873620$ | $3512288563200$ | $4809083232851700$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $1454$ | $51030$ | $1874062$ | $69351150$ | $2565787646$ | $94931290470$ | $3512472494878$ | $129961735815870$ | $4808584598068814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=17 x^6+7 x^5+32 x^4+23 x^3+26 x^2+3 x+10$
- $y^2=15 x^6+8 x^5+35 x^4+23 x^3+10 x^2+15 x+14$
- $y^2=16 x^6+28 x^5+8 x^4+32 x^3+21 x^2+11 x+10$
- $y^2=10 x^6+24 x^5+33 x^4+20 x^3+11 x^2+15 x+36$
- $y^2=21 x^6+10 x^5+29 x^4+19 x^3+29 x^2+10 x+21$
- $y^2=19 x^6+23 x^5+11 x^4+33 x^3+x^2+6 x+18$
- $y^2=33 x^6+19 x^5+6 x^4+13 x^3+6 x^2+19 x+33$
- $y^2=14 x^6+20 x^5+17 x^4+2 x^3+23 x^2+32 x+29$
- $y^2=14 x^6+21 x^5+4 x^4+27 x^3+4 x^2+21 x+14$
- $y^2=22 x^6+32 x^5+x^4+32 x^3+26 x^2+35 x$
- $y^2=35 x^6+26 x^5+8 x^4+18 x^3+x^2+31 x+17$
- $y^2=26 x^6+35 x^5+20 x^4+17 x^3+33 x^2+3 x+11$
- $y^2=26 x^6+15 x^5+21 x^4+11 x^3+7 x^2+27 x+17$
- $y^2=21 x^6+35 x^5+24 x^4+32 x^3+11 x^2+7 x+23$
- $y^2=27 x^6+26 x^5+16 x^4+34 x^3+14 x^2+34 x+23$
- $y^2=31 x^6+4 x^5+18 x^4+20 x^2+36 x+14$
- $y^2=15 x^6+x^5+2 x^4+13 x^3+2 x^2+x+15$
- $y^2=7 x^6+25 x^5+31 x^3+25 x^2+23 x+29$
- $y^2=24 x^6+30 x^5+17 x^4+32 x^3+10 x^2+10 x+2$
- $y^2=22 x^6+23 x^5+27 x^4+10 x^3+20 x^2+14 x+34$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ai $\times$ 1.37.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.k $\times$ 1.1369.cw. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.i_cw | $2$ | (not in LMFDB) |