| L(s)  = 1 | − 2-s   − 3·3-s       + 3·6-s   − 2·7-s   + 8-s   + 6·9-s     + 3·11-s     − 2·13-s   + 2·14-s     − 16-s   − 6·17-s   − 6·18-s   − 2·19-s     + 6·21-s   − 3·22-s   + 6·23-s   − 3·24-s   + 5·25-s   + 2·26-s   − 9·27-s     − 6·29-s     + 4·31-s     − 9·33-s   + 6·34-s       − 8·37-s   + 2·38-s   + 6·39-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s   − 1.73·3-s       + 1.22·6-s   − 0.755·7-s   + 0.353·8-s   + 2·9-s     + 0.904·11-s     − 0.554·13-s   + 0.534·14-s     − 1/4·16-s   − 1.45·17-s   − 1.41·18-s   − 0.458·19-s     + 1.30·21-s   − 0.639·22-s   + 1.25·23-s   − 0.612·24-s   + 25-s   + 0.392·26-s   − 1.73·27-s     − 1.11·29-s     + 0.718·31-s     − 1.56·33-s   + 1.02·34-s       − 1.31·37-s   + 0.324·38-s   + 0.960·39-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.1736174728\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.1736174728\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−18.73425098025001598515848722623, −18.65330191638767616820202141858, −17.58588719176622164211034015698, −17.34259594350077650929836362354, −16.65829432309937211505679158926, −16.50555445570130060214767610978, −15.36554110674836471808657271021, −15.04331307163907501027393190909, −13.60256088276205419926735569181, −13.09153056920829555057476441677, −12.18420205922030737509979676105, −11.75914826730233688681995342362, −10.66744030764575546769971244074, −10.51435608625116348572044517930, −9.327762105443371388541282310587, −8.790108040571259251135981778049, −6.92583624002767656428145584125, −6.85650392855044452343093046473, −5.52147912858687978615646302053, −4.36179441556210697223984606647, 
4.36179441556210697223984606647, 5.52147912858687978615646302053, 6.85650392855044452343093046473, 6.92583624002767656428145584125, 8.790108040571259251135981778049, 9.327762105443371388541282310587, 10.51435608625116348572044517930, 10.66744030764575546769971244074, 11.75914826730233688681995342362, 12.18420205922030737509979676105, 13.09153056920829555057476441677, 13.60256088276205419926735569181, 15.04331307163907501027393190909, 15.36554110674836471808657271021, 16.50555445570130060214767610978, 16.65829432309937211505679158926, 17.34259594350077650929836362354, 17.58588719176622164211034015698, 18.65330191638767616820202141858, 18.73425098025001598515848722623
