| L(s) = 1 | − 3·2-s − 4·3-s + 4·4-s − 6·5-s + 12·6-s − 6·7-s − 3·8-s + 7·9-s + 18·10-s − 3·11-s − 16·12-s − 2·13-s + 18·14-s + 24·15-s + 3·16-s − 8·17-s − 21·18-s − 5·19-s − 24·20-s + 24·21-s + 9·22-s − 6·23-s + 12·24-s + 19·25-s + 6·26-s − 4·27-s − 24·28-s + ⋯ |
| L(s) = 1 | − 2.12·2-s − 2.30·3-s + 2·4-s − 2.68·5-s + 4.89·6-s − 2.26·7-s − 1.06·8-s + 7/3·9-s + 5.69·10-s − 0.904·11-s − 4.61·12-s − 0.554·13-s + 4.81·14-s + 6.19·15-s + 3/4·16-s − 1.94·17-s − 4.94·18-s − 1.14·19-s − 5.36·20-s + 5.23·21-s + 1.91·22-s − 1.25·23-s + 2.44·24-s + 19/5·25-s + 1.17·26-s − 0.769·27-s − 4.53·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 25913 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25913 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.2693591004, −16.0184147193, −15.7560995960, −15.1561219453, −14.9085332030, −13.3400755218, −13.0641035256, −12.4137825210, −12.0936918254, −11.8250306288, −11.1065877350, −10.8782225807, −10.5122563592, −9.92017296890, −9.41783196267, −8.75787920906, −8.21080790407, −7.80905325357, −7.05464350804, −6.70696518394, −6.24749066645, −5.45648770054, −4.42915910934, −3.97385895732, −2.89022073030, 0, 0, 0,
2.89022073030, 3.97385895732, 4.42915910934, 5.45648770054, 6.24749066645, 6.70696518394, 7.05464350804, 7.80905325357, 8.21080790407, 8.75787920906, 9.41783196267, 9.92017296890, 10.5122563592, 10.8782225807, 11.1065877350, 11.8250306288, 12.0936918254, 12.4137825210, 13.0641035256, 13.3400755218, 14.9085332030, 15.1561219453, 15.7560995960, 16.0184147193, 16.2693591004