Properties

Label 4-25913-1.1-c1e2-0-0
Degree $4$
Conductor $25913$
Sign $-1$
Analytic cond. $1.65223$
Root an. cond. $1.13375$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $3$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 4·3-s + 4·4-s − 6·5-s + 12·6-s − 6·7-s − 3·8-s + 7·9-s + 18·10-s − 3·11-s − 16·12-s − 2·13-s + 18·14-s + 24·15-s + 3·16-s − 8·17-s − 21·18-s − 5·19-s − 24·20-s + 24·21-s + 9·22-s − 6·23-s + 12·24-s + 19·25-s + 6·26-s − 4·27-s − 24·28-s + ⋯
L(s)  = 1  − 2.12·2-s − 2.30·3-s + 2·4-s − 2.68·5-s + 4.89·6-s − 2.26·7-s − 1.06·8-s + 7/3·9-s + 5.69·10-s − 0.904·11-s − 4.61·12-s − 0.554·13-s + 4.81·14-s + 6.19·15-s + 3/4·16-s − 1.94·17-s − 4.94·18-s − 1.14·19-s − 5.36·20-s + 5.23·21-s + 1.91·22-s − 1.25·23-s + 2.44·24-s + 19/5·25-s + 1.17·26-s − 0.769·27-s − 4.53·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25913 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25913 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25913\)
Sign: $-1$
Analytic conductor: \(1.65223\)
Root analytic conductor: \(1.13375\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((4,\ 25913,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad25913$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 61 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.2.d_f
3$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + p T + p T^{2} ) \) 2.3.e_j
5$C_2^2$ \( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.5.g_r
7$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.g_w
11$D_{4}$ \( 1 + 3 T + 2 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.11.d_c
13$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.13.c_ac
17$D_{4}$ \( 1 + 8 T + 40 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.17.i_bo
19$D_{4}$ \( 1 + 5 T + 26 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.19.f_ba
23$D_{4}$ \( 1 + 6 T + 31 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.23.g_bf
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.29.e_ac
31$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \) 2.31.a_al
37$D_{4}$ \( 1 - 3 T + 52 T^{2} - 3 p T^{3} + p^{2} T^{4} \) 2.37.ad_ca
41$D_{4}$ \( 1 + 6 T + 74 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.41.g_cw
43$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \) 2.43.a_bx
47$D_{4}$ \( 1 + 2 T - 40 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.47.c_abo
53$D_{4}$ \( 1 + T + 29 T^{2} + p T^{3} + p^{2} T^{4} \) 2.53.b_bd
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.59.ac_cs
61$C_2^2$ \( 1 - 27 T^{2} + p^{2} T^{4} \) 2.61.a_abb
67$D_{4}$ \( 1 + 10 T + 137 T^{2} + 10 p T^{3} + p^{2} T^{4} \) 2.67.k_fh
71$D_{4}$ \( 1 + 6 T - 8 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.71.g_ai
73$D_{4}$ \( 1 + 6 T + 4 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.73.g_e
79$D_{4}$ \( 1 - 6 T + 48 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.79.ag_bw
83$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.83.c_gc
89$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.89.e_gb
97$D_{4}$ \( 1 + 11 T + 98 T^{2} + 11 p T^{3} + p^{2} T^{4} \) 2.97.l_du
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.2693591004, −16.0184147193, −15.7560995960, −15.1561219453, −14.9085332030, −13.3400755218, −13.0641035256, −12.4137825210, −12.0936918254, −11.8250306288, −11.1065877350, −10.8782225807, −10.5122563592, −9.92017296890, −9.41783196267, −8.75787920906, −8.21080790407, −7.80905325357, −7.05464350804, −6.70696518394, −6.24749066645, −5.45648770054, −4.42915910934, −3.97385895732, −2.89022073030, 0, 0, 0, 2.89022073030, 3.97385895732, 4.42915910934, 5.45648770054, 6.24749066645, 6.70696518394, 7.05464350804, 7.80905325357, 8.21080790407, 8.75787920906, 9.41783196267, 9.92017296890, 10.5122563592, 10.8782225807, 11.1065877350, 11.8250306288, 12.0936918254, 12.4137825210, 13.0641035256, 13.3400755218, 14.9085332030, 15.1561219453, 15.7560995960, 16.0184147193, 16.2693591004

Graph of the $Z$-function along the critical line