Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 11 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.221612554268$, $\pm0.778387445732$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-51}, \sqrt{73})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $42$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $951$ | $904401$ | $887534064$ | $856222654329$ | $819628242421551$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $940$ | $29792$ | $927124$ | $28629152$ | $887564446$ | $27512614112$ | $852888244324$ | $26439622160672$ | $819628197862300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=19 x^6+x^5+5 x^4+7 x^3+9 x^2+15 x+23$
- $y^2=26 x^6+3 x^5+15 x^4+21 x^3+27 x^2+14 x+7$
- $y^2=18 x^6+6 x^4+12 x^3+18 x^2+14 x+24$
- $y^2=23 x^6+18 x^4+5 x^3+23 x^2+11 x+10$
- $y^2=23 x^6+7 x^5+24 x^4+6 x^3+21 x^2+21 x+30$
- $y^2=7 x^6+21 x^5+10 x^4+18 x^3+x^2+x+28$
- $y^2=25 x^6+12 x^5+23 x^4+26 x^3+5 x^2+26 x+12$
- $y^2=30 x^6+29 x^5+3 x^4+3 x^3+18 x^2+15 x+7$
- $y^2=28 x^6+25 x^5+9 x^4+9 x^3+23 x^2+14 x+21$
- $y^2=10 x^6+20 x^5+12 x^4+16 x^3+11 x^2+20 x+9$
- $y^2=30 x^6+29 x^5+5 x^4+17 x^3+2 x^2+29 x+27$
- $y^2=x^6+23 x^5+21 x^4+11 x^3+26 x^2+30 x+19$
- $y^2=3 x^6+7 x^5+x^4+2 x^3+16 x^2+28 x+26$
- $y^2=x^6+11 x^5+27 x^4+3 x^3+22 x^2+17 x+27$
- $y^2=3 x^6+2 x^5+19 x^4+9 x^3+4 x^2+20 x+19$
- $y^2=16 x^6+9 x^5+23 x^4+29 x^3+10 x^2+16 x+23$
- $y^2=21 x^6+13 x^5+15 x^4+19 x^3+13 x^2+14 x+25$
- $y^2=x^6+8 x^5+14 x^4+26 x^3+8 x^2+11 x+13$
- $y^2=14 x^6+16 x^5+2 x^4+13 x^3+15 x^2+23 x+16$
- $y^2=11 x^6+17 x^5+6 x^4+8 x^3+14 x^2+7 x+17$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-51}, \sqrt{73})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.al 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3723}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_l | $4$ | (not in LMFDB) |