Properties

Label 2-99372-1.1-c1-0-47
Degree $2$
Conductor $99372$
Sign $-1$
Analytic cond. $793.489$
Root an. cond. $28.1689$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 9-s + 11-s − 2·15-s + 5·17-s + 7·19-s − 6·23-s − 25-s − 27-s + 9·29-s − 8·31-s − 33-s − 6·37-s − 2·41-s + 8·43-s + 2·45-s − 47-s − 5·51-s − 53-s + 2·55-s − 7·57-s + 9·59-s + 5·61-s + 3·67-s + 6·69-s + 15·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.301·11-s − 0.516·15-s + 1.21·17-s + 1.60·19-s − 1.25·23-s − 1/5·25-s − 0.192·27-s + 1.67·29-s − 1.43·31-s − 0.174·33-s − 0.986·37-s − 0.312·41-s + 1.21·43-s + 0.298·45-s − 0.145·47-s − 0.700·51-s − 0.137·53-s + 0.269·55-s − 0.927·57-s + 1.17·59-s + 0.640·61-s + 0.366·67-s + 0.722·69-s + 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99372 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99372\)    =    \(2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(793.489\)
Root analytic conductor: \(28.1689\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 99372,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.01802961070183, −13.71732749535495, −12.90997025995758, −12.54008863977370, −11.90408633102350, −11.77619073431914, −11.09502748911167, −10.33586824213547, −10.15775209918876, −9.646554093492100, −9.235437867735558, −8.583345189603044, −7.806858567582514, −7.603883983315213, −6.729472226508703, −6.472143100175402, −5.675033236489165, −5.379057278679409, −5.095735059748508, −3.983054216223103, −3.754077893589045, −2.874355872242822, −2.272019241669676, −1.406704442179513, −1.088115330071247, 0, 1.088115330071247, 1.406704442179513, 2.272019241669676, 2.874355872242822, 3.754077893589045, 3.983054216223103, 5.095735059748508, 5.379057278679409, 5.675033236489165, 6.472143100175402, 6.729472226508703, 7.603883983315213, 7.806858567582514, 8.583345189603044, 9.235437867735558, 9.646554093492100, 10.15775209918876, 10.33586824213547, 11.09502748911167, 11.77619073431914, 11.90408633102350, 12.54008863977370, 12.90997025995758, 13.71732749535495, 14.01802961070183

Graph of the $Z$-function along the critical line