Properties

Label 2-99372-1.1-c1-0-31
Degree $2$
Conductor $99372$
Sign $-1$
Analytic cond. $793.489$
Root an. cond. $28.1689$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 9-s − 2·11-s − 2·15-s − 6·17-s + 8·19-s − 6·23-s − 25-s − 27-s − 10·29-s + 4·31-s + 2·33-s − 6·37-s − 6·41-s + 4·43-s + 2·45-s + 8·47-s + 6·51-s + 2·53-s − 4·55-s − 8·57-s − 4·59-s + 8·61-s + 8·67-s + 6·69-s + 10·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.603·11-s − 0.516·15-s − 1.45·17-s + 1.83·19-s − 1.25·23-s − 1/5·25-s − 0.192·27-s − 1.85·29-s + 0.718·31-s + 0.348·33-s − 0.986·37-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 0.840·51-s + 0.274·53-s − 0.539·55-s − 1.05·57-s − 0.520·59-s + 1.02·61-s + 0.977·67-s + 0.722·69-s + 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99372 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99372\)    =    \(2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(793.489\)
Root analytic conductor: \(28.1689\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 99372,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93002179114811, −13.45657950589453, −13.21034035124907, −12.52022433014024, −11.99029658940554, −11.60115990235100, −11.01594786042014, −10.60525677018568, −10.03740931067433, −9.577577154174872, −9.265543284458775, −8.587750307826455, −7.865426070596379, −7.525773187690108, −6.766442210575797, −6.473148126412994, −5.635407004194131, −5.452622375696084, −5.001855638216670, −4.096748385972820, −3.721608121197062, −2.826105664735673, −2.115831190751205, −1.792497819381195, −0.8107278507501693, 0, 0.8107278507501693, 1.792497819381195, 2.115831190751205, 2.826105664735673, 3.721608121197062, 4.096748385972820, 5.001855638216670, 5.452622375696084, 5.635407004194131, 6.473148126412994, 6.766442210575797, 7.525773187690108, 7.865426070596379, 8.587750307826455, 9.265543284458775, 9.577577154174872, 10.03740931067433, 10.60525677018568, 11.01594786042014, 11.60115990235100, 11.99029658940554, 12.52022433014024, 13.21034035124907, 13.45657950589453, 13.93002179114811

Graph of the $Z$-function along the critical line