Properties

Label 2-9900-1.1-c1-0-37
Degree $2$
Conductor $9900$
Sign $1$
Analytic cond. $79.0518$
Root an. cond. $8.89111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 11-s + 4·13-s + 3·17-s + 5·19-s + 3·23-s + 6·29-s + 8·31-s + 7·37-s − 9·41-s − 8·43-s − 3·47-s − 6·49-s + 6·53-s − 3·59-s + 14·61-s − 2·67-s + 9·71-s − 2·73-s + 77-s − 79-s + 12·83-s − 18·89-s + 4·91-s − 11·97-s − 15·101-s + 4·103-s + ⋯
L(s)  = 1  + 0.377·7-s + 0.301·11-s + 1.10·13-s + 0.727·17-s + 1.14·19-s + 0.625·23-s + 1.11·29-s + 1.43·31-s + 1.15·37-s − 1.40·41-s − 1.21·43-s − 0.437·47-s − 6/7·49-s + 0.824·53-s − 0.390·59-s + 1.79·61-s − 0.244·67-s + 1.06·71-s − 0.234·73-s + 0.113·77-s − 0.112·79-s + 1.31·83-s − 1.90·89-s + 0.419·91-s − 1.11·97-s − 1.49·101-s + 0.394·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(79.0518\)
Root analytic conductor: \(8.89111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.879559516\)
\(L(\frac12)\) \(\approx\) \(2.879559516\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85774650825639680378676508382, −6.77269717487846203690995545403, −6.50271818222454114352519893816, −5.50081319599068715124578463993, −5.01905571009372582506627337197, −4.16113893051346796211758251657, −3.36512764911309893935966272925, −2.75090623647885184477030554324, −1.47432941596688366128662271423, −0.913667091627177150897834022864, 0.913667091627177150897834022864, 1.47432941596688366128662271423, 2.75090623647885184477030554324, 3.36512764911309893935966272925, 4.16113893051346796211758251657, 5.01905571009372582506627337197, 5.50081319599068715124578463993, 6.50271818222454114352519893816, 6.77269717487846203690995545403, 7.85774650825639680378676508382

Graph of the $Z$-function along the critical line