Properties

Label 2-98736-1.1-c1-0-79
Degree $2$
Conductor $98736$
Sign $-1$
Analytic cond. $788.410$
Root an. cond. $28.0786$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 2·7-s + 9-s + 13-s + 2·15-s + 17-s − 19-s + 2·21-s − 8·23-s − 25-s + 27-s + 6·29-s + 4·31-s + 4·35-s + 2·37-s + 39-s + 4·41-s − 7·43-s + 2·45-s − 13·47-s − 3·49-s + 51-s − 6·53-s − 57-s + 4·59-s + 2·63-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s + 0.277·13-s + 0.516·15-s + 0.242·17-s − 0.229·19-s + 0.436·21-s − 1.66·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.718·31-s + 0.676·35-s + 0.328·37-s + 0.160·39-s + 0.624·41-s − 1.06·43-s + 0.298·45-s − 1.89·47-s − 3/7·49-s + 0.140·51-s − 0.824·53-s − 0.132·57-s + 0.520·59-s + 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98736\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(788.410\)
Root analytic conductor: \(28.0786\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 98736,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05831010259366, −13.52609739167494, −13.29150442113234, −12.52464587741537, −12.16729740546286, −11.43418714614970, −11.22179720865699, −10.32258993349651, −9.959516714233188, −9.782097585149815, −9.004586290199142, −8.439588228283798, −8.075829177461254, −7.729705203155392, −6.901112851045684, −6.243659459660279, −6.078352452333169, −5.234402855433498, −4.738513839057850, −4.211822370064992, −3.524986394002590, −2.859593317354498, −2.225420501519881, −1.681420858008620, −1.193668223383443, 0, 1.193668223383443, 1.681420858008620, 2.225420501519881, 2.859593317354498, 3.524986394002590, 4.211822370064992, 4.738513839057850, 5.234402855433498, 6.078352452333169, 6.243659459660279, 6.901112851045684, 7.729705203155392, 8.075829177461254, 8.439588228283798, 9.004586290199142, 9.782097585149815, 9.959516714233188, 10.32258993349651, 11.22179720865699, 11.43418714614970, 12.16729740546286, 12.52464587741537, 13.29150442113234, 13.52609739167494, 14.05831010259366

Graph of the $Z$-function along the critical line