Properties

Label 2-94320-1.1-c1-0-15
Degree $2$
Conductor $94320$
Sign $-1$
Analytic cond. $753.148$
Root an. cond. $27.4435$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 5·11-s − 2·13-s − 5·17-s − 8·23-s + 25-s + 4·31-s − 2·37-s + 41-s + 10·43-s + 3·47-s − 7·49-s − 2·53-s + 5·55-s − 15·59-s + 7·61-s + 2·65-s − 67-s + 2·71-s + 14·73-s − 6·79-s + 17·83-s + 5·85-s + 89-s − 17·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.50·11-s − 0.554·13-s − 1.21·17-s − 1.66·23-s + 1/5·25-s + 0.718·31-s − 0.328·37-s + 0.156·41-s + 1.52·43-s + 0.437·47-s − 49-s − 0.274·53-s + 0.674·55-s − 1.95·59-s + 0.896·61-s + 0.248·65-s − 0.122·67-s + 0.237·71-s + 1.63·73-s − 0.675·79-s + 1.86·83-s + 0.542·85-s + 0.105·89-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(94320\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 131\)
Sign: $-1$
Analytic conductor: \(753.148\)
Root analytic conductor: \(27.4435\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 94320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
131 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.06398447111861, −13.57185516620169, −13.07111074218286, −12.50474564983134, −12.23540160020589, −11.62592467827579, −10.91793262804932, −10.79477719082544, −10.10981840063541, −9.663640439212222, −9.110693629353257, −8.382277853166601, −8.073201107362931, −7.553108835260224, −7.151339429201858, −6.278762711722724, −6.054903009440708, −5.166866960672461, −4.802688086246628, −4.234752852362407, −3.638896021165777, −2.826244604735413, −2.370189191657280, −1.824945263500838, −0.6286853703870724, 0, 0.6286853703870724, 1.824945263500838, 2.370189191657280, 2.826244604735413, 3.638896021165777, 4.234752852362407, 4.802688086246628, 5.166866960672461, 6.054903009440708, 6.278762711722724, 7.151339429201858, 7.553108835260224, 8.073201107362931, 8.382277853166601, 9.110693629353257, 9.663640439212222, 10.10981840063541, 10.79477719082544, 10.91793262804932, 11.62592467827579, 12.23540160020589, 12.50474564983134, 13.07111074218286, 13.57185516620169, 14.06398447111861

Graph of the $Z$-function along the critical line