Properties

Label 2-9360-1.1-c1-0-36
Degree $2$
Conductor $9360$
Sign $1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 13-s + 6·17-s − 4·19-s + 25-s + 2·29-s − 2·37-s + 2·41-s + 4·43-s + 4·47-s − 7·49-s + 10·53-s + 8·59-s − 2·61-s + 65-s + 4·67-s − 12·71-s − 6·73-s − 16·83-s + 6·85-s + 10·89-s − 4·95-s + 2·97-s + 10·101-s + 8·103-s + 12·107-s + 6·109-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.277·13-s + 1.45·17-s − 0.917·19-s + 1/5·25-s + 0.371·29-s − 0.328·37-s + 0.312·41-s + 0.609·43-s + 0.583·47-s − 49-s + 1.37·53-s + 1.04·59-s − 0.256·61-s + 0.124·65-s + 0.488·67-s − 1.42·71-s − 0.702·73-s − 1.75·83-s + 0.650·85-s + 1.05·89-s − 0.410·95-s + 0.203·97-s + 0.995·101-s + 0.788·103-s + 1.16·107-s + 0.574·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.396438733\)
\(L(\frac12)\) \(\approx\) \(2.396438733\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62324378299215902741062758837, −7.09785396200064465214797516695, −6.17979865503199723019379117152, −5.78207483051557126459637646253, −5.00212344206855813891710351138, −4.19941579765160930774814843783, −3.42136055860817229007355967254, −2.61219362346689852167676333129, −1.71666572186115290853477084758, −0.76321534940383283477320476557, 0.76321534940383283477320476557, 1.71666572186115290853477084758, 2.61219362346689852167676333129, 3.42136055860817229007355967254, 4.19941579765160930774814843783, 5.00212344206855813891710351138, 5.78207483051557126459637646253, 6.17979865503199723019379117152, 7.09785396200064465214797516695, 7.62324378299215902741062758837

Graph of the $Z$-function along the critical line