Properties

Label 2-91728-1.1-c1-0-119
Degree $2$
Conductor $91728$
Sign $-1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 5·11-s + 13-s − 3·17-s − 3·19-s − 3·23-s + 4·25-s + 9·29-s − 10·31-s + 37-s + 4·41-s + 13·43-s − 12·47-s + 10·53-s − 15·55-s + 6·59-s − 3·61-s + 3·65-s + 6·71-s − 9·73-s + 16·79-s − 14·83-s − 9·85-s + 4·89-s − 9·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.50·11-s + 0.277·13-s − 0.727·17-s − 0.688·19-s − 0.625·23-s + 4/5·25-s + 1.67·29-s − 1.79·31-s + 0.164·37-s + 0.624·41-s + 1.98·43-s − 1.75·47-s + 1.37·53-s − 2.02·55-s + 0.781·59-s − 0.384·61-s + 0.372·65-s + 0.712·71-s − 1.05·73-s + 1.80·79-s − 1.53·83-s − 0.976·85-s + 0.423·89-s − 0.923·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 13 T + p T^{2} \) 1.43.an
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99980562352723, −13.60135397259756, −13.04928654383330, −12.81250481194443, −12.36266463898367, −11.50872727790493, −10.97963310803513, −10.59581603447000, −10.10037512513778, −9.804967538513566, −8.924209527336308, −8.844922984004864, −8.021946488886501, −7.622640576897148, −6.879076867016969, −6.389404253179385, −5.805090337423274, −5.512226559283180, −4.834720034473965, −4.323401036280006, −3.549101506025380, −2.705457406978115, −2.306629258396301, −1.868514306383757, −0.9098571181234324, 0, 0.9098571181234324, 1.868514306383757, 2.306629258396301, 2.705457406978115, 3.549101506025380, 4.323401036280006, 4.834720034473965, 5.512226559283180, 5.805090337423274, 6.389404253179385, 6.879076867016969, 7.622640576897148, 8.021946488886501, 8.844922984004864, 8.924209527336308, 9.804967538513566, 10.10037512513778, 10.59581603447000, 10.97963310803513, 11.50872727790493, 12.36266463898367, 12.81250481194443, 13.04928654383330, 13.60135397259756, 13.99980562352723

Graph of the $Z$-function along the critical line