Properties

Label 2-90160-1.1-c1-0-45
Degree $2$
Conductor $90160$
Sign $-1$
Analytic cond. $719.931$
Root an. cond. $26.8315$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 9-s + 2·11-s + 4·13-s + 2·15-s + 2·17-s − 4·19-s − 23-s + 25-s + 4·27-s − 2·29-s − 4·31-s − 4·33-s − 8·37-s − 8·39-s + 2·41-s − 10·43-s − 45-s − 12·47-s − 4·51-s − 4·53-s − 2·55-s + 8·57-s + 10·59-s + 14·61-s − 4·65-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 1/3·9-s + 0.603·11-s + 1.10·13-s + 0.516·15-s + 0.485·17-s − 0.917·19-s − 0.208·23-s + 1/5·25-s + 0.769·27-s − 0.371·29-s − 0.718·31-s − 0.696·33-s − 1.31·37-s − 1.28·39-s + 0.312·41-s − 1.52·43-s − 0.149·45-s − 1.75·47-s − 0.560·51-s − 0.549·53-s − 0.269·55-s + 1.05·57-s + 1.30·59-s + 1.79·61-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90160\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(719.931\)
Root analytic conductor: \(26.8315\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 90160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31317029949310, −13.38171220885151, −13.12061098048695, −12.55011954127821, −11.92252046513723, −11.73109030604971, −11.13224685908775, −10.85542827807668, −10.27417846103473, −9.784091725925119, −9.050011411337063, −8.499113593423839, −8.230743835487832, −7.448048735462349, −6.774374073762315, −6.430662916322563, −6.041066030713568, −5.181911250873185, −5.085290473897491, −4.167281877891481, −3.627673386362244, −3.271457564768452, −2.122628303195465, −1.516187978143585, −0.7357384556454294, 0, 0.7357384556454294, 1.516187978143585, 2.122628303195465, 3.271457564768452, 3.627673386362244, 4.167281877891481, 5.085290473897491, 5.181911250873185, 6.041066030713568, 6.430662916322563, 6.774374073762315, 7.448048735462349, 8.230743835487832, 8.499113593423839, 9.050011411337063, 9.784091725925119, 10.27417846103473, 10.85542827807668, 11.13224685908775, 11.73109030604971, 11.92252046513723, 12.55011954127821, 13.12061098048695, 13.38171220885151, 14.31317029949310

Graph of the $Z$-function along the critical line