Properties

Label 2-89232-1.1-c1-0-36
Degree $2$
Conductor $89232$
Sign $-1$
Analytic cond. $712.521$
Root an. cond. $26.6930$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 4·7-s + 9-s + 11-s + 2·15-s − 8·17-s − 6·19-s − 4·21-s + 6·23-s − 25-s − 27-s − 2·29-s − 2·31-s − 33-s − 8·35-s − 4·37-s − 2·41-s − 4·43-s − 2·45-s + 4·47-s + 9·49-s + 8·51-s − 8·53-s − 2·55-s + 6·57-s + 12·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 0.516·15-s − 1.94·17-s − 1.37·19-s − 0.872·21-s + 1.25·23-s − 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.359·31-s − 0.174·33-s − 1.35·35-s − 0.657·37-s − 0.312·41-s − 0.609·43-s − 0.298·45-s + 0.583·47-s + 9/7·49-s + 1.12·51-s − 1.09·53-s − 0.269·55-s + 0.794·57-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 89232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(89232\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(712.521\)
Root analytic conductor: \(26.6930\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 89232,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.18327911475459, −13.61046681973330, −12.93971369264012, −12.76036391384380, −11.90012313458467, −11.60290295922835, −11.16416944326301, −10.86488241868096, −10.48292004542441, −9.605158325669146, −8.913123955392442, −8.553718016094212, −8.209913345449583, −7.464359740222114, −7.028647328794630, −6.587598852048033, −5.930256775646471, −5.112240800950635, −4.832148822791637, −4.180488748448569, −3.972548156745240, −3.000660277386322, −1.991441499339837, −1.822627938861727, −0.7518932342501759, 0, 0.7518932342501759, 1.822627938861727, 1.991441499339837, 3.000660277386322, 3.972548156745240, 4.180488748448569, 4.832148822791637, 5.112240800950635, 5.930256775646471, 6.587598852048033, 7.028647328794630, 7.464359740222114, 8.209913345449583, 8.553718016094212, 8.913123955392442, 9.605158325669146, 10.48292004542441, 10.86488241868096, 11.16416944326301, 11.60290295922835, 11.90012313458467, 12.76036391384380, 12.93971369264012, 13.61046681973330, 14.18327911475459

Graph of the $Z$-function along the critical line