L(s) = 1 | + 3·11-s + 2·13-s − 2·19-s − 7·23-s + 3·29-s + 6·31-s − 3·37-s + 5·43-s + 2·47-s − 2·53-s − 10·59-s + 8·61-s − 9·67-s − 9·71-s + 8·73-s − 79-s + 14·83-s − 6·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | + 0.904·11-s + 0.554·13-s − 0.458·19-s − 1.45·23-s + 0.557·29-s + 1.07·31-s − 0.493·37-s + 0.762·43-s + 0.291·47-s − 0.274·53-s − 1.30·59-s + 1.02·61-s − 1.09·67-s − 1.06·71-s + 0.936·73-s − 0.112·79-s + 1.53·83-s − 0.635·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 88200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 \) | |
| 7 | \( 1 \) | |
good | 11 | \( 1 - 3 T + p T^{2} \) | 1.11.ad |
| 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac |
| 17 | \( 1 + p T^{2} \) | 1.17.a |
| 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c |
| 23 | \( 1 + 7 T + p T^{2} \) | 1.23.h |
| 29 | \( 1 - 3 T + p T^{2} \) | 1.29.ad |
| 31 | \( 1 - 6 T + p T^{2} \) | 1.31.ag |
| 37 | \( 1 + 3 T + p T^{2} \) | 1.37.d |
| 41 | \( 1 + p T^{2} \) | 1.41.a |
| 43 | \( 1 - 5 T + p T^{2} \) | 1.43.af |
| 47 | \( 1 - 2 T + p T^{2} \) | 1.47.ac |
| 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c |
| 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k |
| 61 | \( 1 - 8 T + p T^{2} \) | 1.61.ai |
| 67 | \( 1 + 9 T + p T^{2} \) | 1.67.j |
| 71 | \( 1 + 9 T + p T^{2} \) | 1.71.j |
| 73 | \( 1 - 8 T + p T^{2} \) | 1.73.ai |
| 79 | \( 1 + T + p T^{2} \) | 1.79.b |
| 83 | \( 1 - 14 T + p T^{2} \) | 1.83.ao |
| 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.07515802582875, −13.71399232121773, −13.27886146936721, −12.46132326370849, −12.21735664153562, −11.72752032825460, −11.22646410846464, −10.58575819214218, −10.23632461507624, −9.658298996208644, −9.041738433895392, −8.728158727140486, −7.974547875935955, −7.779371532782981, −6.827809814068368, −6.492214958032282, −6.019777611411776, −5.465040686617532, −4.641329652541026, −4.183821124882636, −3.723652224828341, −2.992825310213674, −2.309115163490080, −1.595162336885481, −0.9727315260328322, 0,
0.9727315260328322, 1.595162336885481, 2.309115163490080, 2.992825310213674, 3.723652224828341, 4.183821124882636, 4.641329652541026, 5.465040686617532, 6.019777611411776, 6.492214958032282, 6.827809814068368, 7.779371532782981, 7.974547875935955, 8.728158727140486, 9.041738433895392, 9.658298996208644, 10.23632461507624, 10.58575819214218, 11.22646410846464, 11.72752032825460, 12.21735664153562, 12.46132326370849, 13.27886146936721, 13.71399232121773, 14.07515802582875