Properties

Label 2-86700-1.1-c1-0-23
Degree $2$
Conductor $86700$
Sign $-1$
Analytic cond. $692.302$
Root an. cond. $26.3116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·11-s − 13-s + 2·19-s − 23-s − 27-s − 8·29-s + 10·31-s + 4·33-s + 3·37-s + 39-s + 4·41-s + 10·43-s − 3·47-s − 7·49-s − 6·53-s − 2·57-s + 7·59-s − 61-s − 2·67-s + 69-s + 71-s + 11·73-s + 2·79-s + 81-s − 11·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.20·11-s − 0.277·13-s + 0.458·19-s − 0.208·23-s − 0.192·27-s − 1.48·29-s + 1.79·31-s + 0.696·33-s + 0.493·37-s + 0.160·39-s + 0.624·41-s + 1.52·43-s − 0.437·47-s − 49-s − 0.824·53-s − 0.264·57-s + 0.911·59-s − 0.128·61-s − 0.244·67-s + 0.120·69-s + 0.118·71-s + 1.28·73-s + 0.225·79-s + 1/9·81-s − 1.20·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(86700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(692.302\)
Root analytic conductor: \(26.3116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 86700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.11183090725132, −13.59133822491208, −13.09447131371704, −12.65094042493740, −12.27507784097430, −11.60469492065033, −11.10543527985762, −10.87010473443123, −10.10398957605078, −9.750334888985331, −9.359810716991520, −8.507307409134504, −8.010155037329745, −7.578334756591408, −7.108048613112878, −6.362374524278411, −5.925054176336423, −5.353402396112525, −4.902475777630832, −4.314762540533048, −3.686870155224600, −2.831975696884181, −2.457289895773834, −1.585068030472029, −0.7710093548772571, 0, 0.7710093548772571, 1.585068030472029, 2.457289895773834, 2.831975696884181, 3.686870155224600, 4.314762540533048, 4.902475777630832, 5.353402396112525, 5.925054176336423, 6.362374524278411, 7.108048613112878, 7.578334756591408, 8.010155037329745, 8.507307409134504, 9.359810716991520, 9.750334888985331, 10.10398957605078, 10.87010473443123, 11.10543527985762, 11.60469492065033, 12.27507784097430, 12.65094042493740, 13.09447131371704, 13.59133822491208, 14.11183090725132

Graph of the $Z$-function along the critical line