Properties

Label 2-8190-1.1-c1-0-47
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s − 2·11-s + 13-s + 14-s + 16-s − 4·17-s − 8·19-s + 20-s − 2·22-s + 8·23-s + 25-s + 26-s + 28-s + 6·29-s − 2·31-s + 32-s − 4·34-s + 35-s + 10·37-s − 8·38-s + 40-s − 4·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s − 0.603·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.970·17-s − 1.83·19-s + 0.223·20-s − 0.426·22-s + 1.66·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s + 1.11·29-s − 0.359·31-s + 0.176·32-s − 0.685·34-s + 0.169·35-s + 1.64·37-s − 1.29·38-s + 0.158·40-s − 0.624·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.665835831\)
\(L(\frac12)\) \(\approx\) \(3.665835831\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76634326984586350632372766384, −6.86057522368596310000804813497, −6.44010759220480879723926060936, −5.72059830573245017533946481346, −4.83521065442879528501507398067, −4.52552178489530673454170157045, −3.55215993859798483709183766894, −2.54221585522815788797287431399, −2.10912837995800716108955088415, −0.842857540353727687934095928810, 0.842857540353727687934095928810, 2.10912837995800716108955088415, 2.54221585522815788797287431399, 3.55215993859798483709183766894, 4.52552178489530673454170157045, 4.83521065442879528501507398067, 5.72059830573245017533946481346, 6.44010759220480879723926060936, 6.86057522368596310000804813497, 7.76634326984586350632372766384

Graph of the $Z$-function along the critical line