Properties

Label 2-80850-1.1-c1-0-133
Degree $2$
Conductor $80850$
Sign $1$
Analytic cond. $645.590$
Root an. cond. $25.4084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 11-s + 12-s + 6·13-s + 16-s + 6·17-s + 18-s + 2·19-s + 22-s + 24-s + 6·26-s + 27-s + 8·29-s + 32-s + 33-s + 6·34-s + 36-s + 10·37-s + 2·38-s + 6·39-s − 8·41-s + 44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.301·11-s + 0.288·12-s + 1.66·13-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.458·19-s + 0.213·22-s + 0.204·24-s + 1.17·26-s + 0.192·27-s + 1.48·29-s + 0.176·32-s + 0.174·33-s + 1.02·34-s + 1/6·36-s + 1.64·37-s + 0.324·38-s + 0.960·39-s − 1.24·41-s + 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(645.590\)
Root analytic conductor: \(25.4084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 80850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.128609609\)
\(L(\frac12)\) \(\approx\) \(8.128609609\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08171928997491, −13.50326468053826, −13.13246131452454, −12.61775111396557, −11.95364194881677, −11.68104960703230, −11.08911850603687, −10.47008815865946, −10.03498510331821, −9.523849234991962, −8.821846666758944, −8.380458322685307, −7.853443899149057, −7.440352929937061, −6.588367193535587, −6.254315548005563, −5.769814382484894, −4.987366278603826, −4.560537165950010, −3.729142611918841, −3.409567465424237, −2.950922649305151, −2.100530628744036, −1.285089060433142, −0.9054223760076032, 0.9054223760076032, 1.285089060433142, 2.100530628744036, 2.950922649305151, 3.409567465424237, 3.729142611918841, 4.560537165950010, 4.987366278603826, 5.769814382484894, 6.254315548005563, 6.588367193535587, 7.440352929937061, 7.853443899149057, 8.380458322685307, 8.821846666758944, 9.523849234991962, 10.03498510331821, 10.47008815865946, 11.08911850603687, 11.68104960703230, 11.95364194881677, 12.61775111396557, 13.13246131452454, 13.50326468053826, 14.08171928997491

Graph of the $Z$-function along the critical line