Properties

Label 2-80325-1.1-c1-0-86
Degree $2$
Conductor $80325$
Sign $-1$
Analytic cond. $641.398$
Root an. cond. $25.3258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 7-s + 4·13-s + 4·16-s − 17-s + 2·19-s + 9·23-s + 2·28-s + 9·29-s + 5·31-s − 2·37-s + 43-s − 9·47-s + 49-s − 8·52-s − 9·59-s − 61-s − 8·64-s − 5·67-s + 2·68-s + 9·71-s + 7·73-s − 4·76-s − 10·79-s + 9·89-s − 4·91-s − 18·92-s + ⋯
L(s)  = 1  − 4-s − 0.377·7-s + 1.10·13-s + 16-s − 0.242·17-s + 0.458·19-s + 1.87·23-s + 0.377·28-s + 1.67·29-s + 0.898·31-s − 0.328·37-s + 0.152·43-s − 1.31·47-s + 1/7·49-s − 1.10·52-s − 1.17·59-s − 0.128·61-s − 64-s − 0.610·67-s + 0.242·68-s + 1.06·71-s + 0.819·73-s − 0.458·76-s − 1.12·79-s + 0.953·89-s − 0.419·91-s − 1.87·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80325\)    =    \(3^{3} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(641.398\)
Root analytic conductor: \(25.3258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09268639880606, −13.68647498220987, −13.29864677816504, −12.88063814251066, −12.36400259563770, −11.79703843872922, −11.25612824929337, −10.54838033889979, −10.37794988932413, −9.524740132718236, −9.266740935202754, −8.699537012952535, −8.257797177670553, −7.812923493483532, −6.940304826852722, −6.541559377129955, −6.000195452925522, −5.276433991711893, −4.804524596156897, −4.365073699924622, −3.529585451180649, −3.188545302128726, −2.538754303024195, −1.263704225060293, −1.030725376342124, 0, 1.030725376342124, 1.263704225060293, 2.538754303024195, 3.188545302128726, 3.529585451180649, 4.365073699924622, 4.804524596156897, 5.276433991711893, 6.000195452925522, 6.541559377129955, 6.940304826852722, 7.812923493483532, 8.257797177670553, 8.699537012952535, 9.266740935202754, 9.524740132718236, 10.37794988932413, 10.54838033889979, 11.25612824929337, 11.79703843872922, 12.36400259563770, 12.88063814251066, 13.29864677816504, 13.68647498220987, 14.09268639880606

Graph of the $Z$-function along the critical line