Properties

Label 2-79800-1.1-c1-0-30
Degree $2$
Conductor $79800$
Sign $1$
Analytic cond. $637.206$
Root an. cond. $25.2429$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 2·11-s + 6·13-s − 19-s + 21-s + 4·23-s + 27-s + 6·29-s + 10·31-s + 2·33-s + 8·37-s + 6·39-s − 2·41-s + 6·47-s + 49-s − 10·53-s − 57-s − 4·59-s − 2·61-s + 63-s − 10·67-s + 4·69-s − 8·71-s + 2·73-s + 2·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.603·11-s + 1.66·13-s − 0.229·19-s + 0.218·21-s + 0.834·23-s + 0.192·27-s + 1.11·29-s + 1.79·31-s + 0.348·33-s + 1.31·37-s + 0.960·39-s − 0.312·41-s + 0.875·47-s + 1/7·49-s − 1.37·53-s − 0.132·57-s − 0.520·59-s − 0.256·61-s + 0.125·63-s − 1.22·67-s + 0.481·69-s − 0.949·71-s + 0.234·73-s + 0.227·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 79800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 79800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(79800\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(637.206\)
Root analytic conductor: \(25.2429\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 79800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.203910583\)
\(L(\frac12)\) \(\approx\) \(5.203910583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91846890885839, −13.58288989194793, −13.16178900760324, −12.57770913678729, −11.89216077340927, −11.61932715118918, −10.90031358973317, −10.59194393615463, −9.994804763369868, −9.323455890391409, −8.846589983514185, −8.548514136019160, −7.909644392956599, −7.559501159988725, −6.637351541216943, −6.326639644689022, −5.915958671878034, −4.892225106171529, −4.529348869278826, −3.956731045740800, −3.241197441448338, −2.833831042701315, −1.982632197977682, −1.207464183038149, −0.8366492761350265, 0.8366492761350265, 1.207464183038149, 1.982632197977682, 2.833831042701315, 3.241197441448338, 3.956731045740800, 4.529348869278826, 4.892225106171529, 5.915958671878034, 6.326639644689022, 6.637351541216943, 7.559501159988725, 7.909644392956599, 8.548514136019160, 8.846589983514185, 9.323455890391409, 9.994804763369868, 10.59194393615463, 10.90031358973317, 11.61932715118918, 11.89216077340927, 12.57770913678729, 13.16178900760324, 13.58288989194793, 13.91846890885839

Graph of the $Z$-function along the critical line