Properties

Label 2-280e2-1.1-c1-0-42
Degree $2$
Conductor $78400$
Sign $1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s − 4·11-s − 6·13-s − 4·17-s + 6·19-s + 4·23-s + 4·27-s + 6·29-s + 4·31-s + 8·33-s − 6·37-s + 12·39-s − 4·41-s + 12·43-s − 12·47-s + 8·51-s + 6·53-s − 12·57-s + 6·59-s − 6·61-s + 12·67-s − 8·69-s + 8·71-s − 11·81-s − 6·83-s − 12·87-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s − 1.20·11-s − 1.66·13-s − 0.970·17-s + 1.37·19-s + 0.834·23-s + 0.769·27-s + 1.11·29-s + 0.718·31-s + 1.39·33-s − 0.986·37-s + 1.92·39-s − 0.624·41-s + 1.82·43-s − 1.75·47-s + 1.12·51-s + 0.824·53-s − 1.58·57-s + 0.781·59-s − 0.768·61-s + 1.46·67-s − 0.963·69-s + 0.949·71-s − 1.22·81-s − 0.658·83-s − 1.28·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7828625770\)
\(L(\frac12)\) \(\approx\) \(0.7828625770\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12629351490102, −13.41502785019472, −12.90258742244383, −12.45617737305412, −11.95672679913964, −11.58945032759386, −11.08914495084366, −10.41011073647992, −10.27495656739589, −9.571014719039612, −9.103434075639346, −8.295083860976212, −7.896595859143263, −7.159409019408548, −6.860211710859883, −6.305972931149132, −5.448677959120764, −5.141358176831669, −4.888633544462919, −4.204128371371293, −3.132103076668880, −2.721134881624673, −2.111951462203254, −0.9996517269719899, −0.3671699377371634, 0.3671699377371634, 0.9996517269719899, 2.111951462203254, 2.721134881624673, 3.132103076668880, 4.204128371371293, 4.888633544462919, 5.141358176831669, 5.448677959120764, 6.305972931149132, 6.860211710859883, 7.159409019408548, 7.896595859143263, 8.295083860976212, 9.103434075639346, 9.571014719039612, 10.27495656739589, 10.41011073647992, 11.08914495084366, 11.58945032759386, 11.95672679913964, 12.45617737305412, 12.90258742244383, 13.41502785019472, 14.12629351490102

Graph of the $Z$-function along the critical line