Properties

Label 2-77616-1.1-c1-0-150
Degree $2$
Conductor $77616$
Sign $-1$
Analytic cond. $619.766$
Root an. cond. $24.8951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s + 6·13-s − 2·19-s + 4·23-s − 5·25-s + 2·29-s + 2·31-s + 2·37-s − 8·41-s + 2·47-s + 10·53-s + 4·59-s − 10·61-s − 4·67-s + 8·73-s − 8·79-s + 2·83-s − 6·89-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.301·11-s + 1.66·13-s − 0.458·19-s + 0.834·23-s − 25-s + 0.371·29-s + 0.359·31-s + 0.328·37-s − 1.24·41-s + 0.291·47-s + 1.37·53-s + 0.520·59-s − 1.28·61-s − 0.488·67-s + 0.936·73-s − 0.900·79-s + 0.219·83-s − 0.635·89-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 77616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(77616\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(619.766\)
Root analytic conductor: \(24.8951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 77616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.11292282683322, −13.70414351636360, −13.32817634428556, −12.93504888645507, −12.25153873337423, −11.76176901837109, −11.23649301332942, −10.84030919112377, −10.25437058036813, −9.902752082054387, −8.992916545850311, −8.819619924410196, −8.191647790931465, −7.750916146546209, −7.043282198282612, −6.482178758395823, −6.056505185356032, −5.457252119708633, −4.901126613036559, −4.106024541547620, −3.756113124282459, −3.030847910117472, −2.407609568793354, −1.564297789633255, −1.002724997020092, 0, 1.002724997020092, 1.564297789633255, 2.407609568793354, 3.030847910117472, 3.756113124282459, 4.106024541547620, 4.901126613036559, 5.457252119708633, 6.056505185356032, 6.482178758395823, 7.043282198282612, 7.750916146546209, 8.191647790931465, 8.819619924410196, 8.992916545850311, 9.902752082054387, 10.25437058036813, 10.84030919112377, 11.23649301332942, 11.76176901837109, 12.25153873337423, 12.93504888645507, 13.32817634428556, 13.70414351636360, 14.11292282683322

Graph of the $Z$-function along the critical line