Properties

Label 2-73034-1.1-c1-0-4
Degree $2$
Conductor $73034$
Sign $-1$
Analytic cond. $583.179$
Root an. cond. $24.1491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 4·7-s − 8-s − 3·9-s + 10-s − 3·11-s + 13-s + 4·14-s + 16-s + 7·17-s + 3·18-s + 2·19-s − 20-s + 3·22-s − 9·23-s − 4·25-s − 26-s − 4·28-s + 4·29-s − 31-s − 32-s − 7·34-s + 4·35-s − 3·36-s − 2·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.51·7-s − 0.353·8-s − 9-s + 0.316·10-s − 0.904·11-s + 0.277·13-s + 1.06·14-s + 1/4·16-s + 1.69·17-s + 0.707·18-s + 0.458·19-s − 0.223·20-s + 0.639·22-s − 1.87·23-s − 4/5·25-s − 0.196·26-s − 0.755·28-s + 0.742·29-s − 0.179·31-s − 0.176·32-s − 1.20·34-s + 0.676·35-s − 1/2·36-s − 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(73034\)    =    \(2 \cdot 13 \cdot 53^{2}\)
Sign: $-1$
Analytic conductor: \(583.179\)
Root analytic conductor: \(24.1491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 73034,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
13 \( 1 - T \)
53 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32579811403842, −13.82041873598876, −13.43311630427222, −12.61294154144114, −12.30295964058534, −11.86165078444725, −11.39683346202193, −10.63071092955159, −10.24658824196773, −9.711153315089176, −9.521701005994492, −8.671660826158691, −8.111358455681366, −7.881255563861841, −7.292040020832679, −6.578403851411308, −5.988554418203707, −5.704363698262232, −5.111683737902693, −3.932638333633168, −3.614474329257561, −2.898301688048415, −2.592816369181621, −1.580384336587780, −0.5768152042973063, 0, 0.5768152042973063, 1.580384336587780, 2.592816369181621, 2.898301688048415, 3.614474329257561, 3.932638333633168, 5.111683737902693, 5.704363698262232, 5.988554418203707, 6.578403851411308, 7.292040020832679, 7.881255563861841, 8.111358455681366, 8.671660826158691, 9.521701005994492, 9.711153315089176, 10.24658824196773, 10.63071092955159, 11.39683346202193, 11.86165078444725, 12.30295964058534, 12.61294154144114, 13.43311630427222, 13.82041873598876, 14.32579811403842

Graph of the $Z$-function along the critical line