Properties

Label 2-728-1.1-c1-0-15
Degree $2$
Conductor $728$
Sign $-1$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 3·9-s + 2·11-s + 13-s − 7·19-s − 3·23-s − 4·25-s − 9·29-s + 5·31-s + 35-s − 8·37-s − 10·41-s + 5·43-s + 3·45-s + 7·47-s + 49-s + 3·53-s − 2·55-s + 6·61-s + 3·63-s − 65-s − 10·67-s + 4·71-s − 11·73-s − 2·77-s − 11·79-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 9-s + 0.603·11-s + 0.277·13-s − 1.60·19-s − 0.625·23-s − 4/5·25-s − 1.67·29-s + 0.898·31-s + 0.169·35-s − 1.31·37-s − 1.56·41-s + 0.762·43-s + 0.447·45-s + 1.02·47-s + 1/7·49-s + 0.412·53-s − 0.269·55-s + 0.768·61-s + 0.377·63-s − 0.124·65-s − 1.22·67-s + 0.474·71-s − 1.28·73-s − 0.227·77-s − 1.23·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01513649753358836657539015140, −8.904130419685472930571593520552, −8.436689878182382611349679160524, −7.35663560732594657846546069334, −6.34340387335422307141360060611, −5.63592882191656149796503033584, −4.24611636549978990034128034887, −3.44651529114702159448438484724, −2.06843208978381721287541494629, 0, 2.06843208978381721287541494629, 3.44651529114702159448438484724, 4.24611636549978990034128034887, 5.63592882191656149796503033584, 6.34340387335422307141360060611, 7.35663560732594657846546069334, 8.436689878182382611349679160524, 8.904130419685472930571593520552, 10.01513649753358836657539015140

Graph of the $Z$-function along the critical line