| L(s)  = 1 | − 3·5-s     + 3·7-s         + 3·11-s     + 6·13-s         − 6·17-s     − 2·19-s         − 6·23-s     + 4·25-s         − 6·29-s     − 3·31-s         − 9·35-s     + 6·37-s         + 6·41-s     − 8·43-s         − 12·47-s     + 2·49-s         + 3·53-s     − 9·55-s         + 12·59-s             − 18·65-s     − 4·67-s         + 6·71-s     − 11·73-s         + 9·77-s     + 12·79-s         − 9·83-s     + 18·85-s  + ⋯ | 
| L(s)  = 1 | − 1.34·5-s     + 1.13·7-s         + 0.904·11-s     + 1.66·13-s         − 1.45·17-s     − 0.458·19-s         − 1.25·23-s     + 4/5·25-s         − 1.11·29-s     − 0.538·31-s         − 1.52·35-s     + 0.986·37-s         + 0.937·41-s     − 1.21·43-s         − 1.75·47-s     + 2/7·49-s         + 0.412·53-s     − 1.21·55-s         + 1.56·59-s             − 2.23·65-s     − 0.488·67-s         + 0.712·71-s     − 1.28·73-s         + 1.02·77-s     + 1.35·79-s         − 0.987·83-s     + 1.95·85-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
| good | 5 | \( 1 + 3 T + p T^{2} \) | 1.5.d | 
|  | 7 | \( 1 - 3 T + p T^{2} \) | 1.7.ad | 
|  | 11 | \( 1 - 3 T + p T^{2} \) | 1.11.ad | 
|  | 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag | 
|  | 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g | 
|  | 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c | 
|  | 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g | 
|  | 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | 
|  | 31 | \( 1 + 3 T + p T^{2} \) | 1.31.d | 
|  | 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i | 
|  | 47 | \( 1 + 12 T + p T^{2} \) | 1.47.m | 
|  | 53 | \( 1 - 3 T + p T^{2} \) | 1.53.ad | 
|  | 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am | 
|  | 61 | \( 1 + p T^{2} \) | 1.61.a | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 - 6 T + p T^{2} \) | 1.71.ag | 
|  | 73 | \( 1 + 11 T + p T^{2} \) | 1.73.l | 
|  | 79 | \( 1 - 12 T + p T^{2} \) | 1.79.am | 
|  | 83 | \( 1 + 9 T + p T^{2} \) | 1.83.j | 
|  | 89 | \( 1 + p T^{2} \) | 1.89.a | 
|  | 97 | \( 1 + 17 T + p T^{2} \) | 1.97.r | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.88056020760117443519977211244, −6.88360669588487199412978363469, −6.34669118391857271453057419144, −5.47723731972843167641934519937, −4.37746956077571881065198143446, −4.10643823878462715404660717433, −3.48928984064185213209861346934, −2.10032734758604479504917672706, −1.32155344014639571241711159700, 0, 
1.32155344014639571241711159700, 2.10032734758604479504917672706, 3.48928984064185213209861346934, 4.10643823878462715404660717433, 4.37746956077571881065198143446, 5.47723731972843167641934519937, 6.34669118391857271453057419144, 6.88360669588487199412978363469, 7.88056020760117443519977211244
