Properties

Label 2-6912-1.1-c1-0-92
Degree $2$
Conductor $6912$
Sign $-1$
Analytic cond. $55.1925$
Root an. cond. $7.42917$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 3·7-s + 3·11-s + 6·13-s − 6·17-s − 2·19-s − 6·23-s + 4·25-s − 6·29-s − 3·31-s − 9·35-s + 6·37-s + 6·41-s − 8·43-s − 12·47-s + 2·49-s + 3·53-s − 9·55-s + 12·59-s − 18·65-s − 4·67-s + 6·71-s − 11·73-s + 9·77-s + 12·79-s − 9·83-s + 18·85-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.13·7-s + 0.904·11-s + 1.66·13-s − 1.45·17-s − 0.458·19-s − 1.25·23-s + 4/5·25-s − 1.11·29-s − 0.538·31-s − 1.52·35-s + 0.986·37-s + 0.937·41-s − 1.21·43-s − 1.75·47-s + 2/7·49-s + 0.412·53-s − 1.21·55-s + 1.56·59-s − 2.23·65-s − 0.488·67-s + 0.712·71-s − 1.28·73-s + 1.02·77-s + 1.35·79-s − 0.987·83-s + 1.95·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6912\)    =    \(2^{8} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(55.1925\)
Root analytic conductor: \(7.42917\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6912,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88056020760117443519977211244, −6.88360669588487199412978363469, −6.34669118391857271453057419144, −5.47723731972843167641934519937, −4.37746956077571881065198143446, −4.10643823878462715404660717433, −3.48928984064185213209861346934, −2.10032734758604479504917672706, −1.32155344014639571241711159700, 0, 1.32155344014639571241711159700, 2.10032734758604479504917672706, 3.48928984064185213209861346934, 4.10643823878462715404660717433, 4.37746956077571881065198143446, 5.47723731972843167641934519937, 6.34669118391857271453057419144, 6.88360669588487199412978363469, 7.88056020760117443519977211244

Graph of the $Z$-function along the critical line