Properties

Label 2-66300-1.1-c1-0-4
Degree $2$
Conductor $66300$
Sign $1$
Analytic cond. $529.408$
Root an. cond. $23.0088$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 3·11-s − 13-s − 17-s − 3·19-s + 21-s + 2·23-s − 27-s + 29-s − 10·31-s − 3·33-s − 7·37-s + 39-s + 5·41-s + 12·43-s + 9·47-s − 6·49-s + 51-s + 11·53-s + 3·57-s − 12·59-s − 2·61-s − 63-s − 2·69-s − 4·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.904·11-s − 0.277·13-s − 0.242·17-s − 0.688·19-s + 0.218·21-s + 0.417·23-s − 0.192·27-s + 0.185·29-s − 1.79·31-s − 0.522·33-s − 1.15·37-s + 0.160·39-s + 0.780·41-s + 1.82·43-s + 1.31·47-s − 6/7·49-s + 0.140·51-s + 1.51·53-s + 0.397·57-s − 1.56·59-s − 0.256·61-s − 0.125·63-s − 0.240·69-s − 0.474·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(529.408\)
Root analytic conductor: \(23.0088\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 66300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.366095589\)
\(L(\frac12)\) \(\approx\) \(1.366095589\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08329024153051, −13.82328611370234, −13.05868865784179, −12.50046063620232, −12.36299013949685, −11.73714165603875, −11.00787512841760, −10.80072964516582, −10.30276138133084, −9.427454207420460, −9.201122680914480, −8.769751061279034, −7.913129443034162, −7.310425250703258, −6.938989527697873, −6.305544897616813, −5.878305189337729, −5.260998446341674, −4.643035523679073, −3.941053957340978, −3.637389873124742, −2.659149598566052, −2.035000261716967, −1.243415606010393, −0.4313133965735780, 0.4313133965735780, 1.243415606010393, 2.035000261716967, 2.659149598566052, 3.637389873124742, 3.941053957340978, 4.643035523679073, 5.260998446341674, 5.878305189337729, 6.305544897616813, 6.938989527697873, 7.310425250703258, 7.913129443034162, 8.769751061279034, 9.201122680914480, 9.427454207420460, 10.30276138133084, 10.80072964516582, 11.00787512841760, 11.73714165603875, 12.36299013949685, 12.50046063620232, 13.05868865784179, 13.82328611370234, 14.08329024153051

Graph of the $Z$-function along the critical line