Properties

Label 2-65520-1.1-c1-0-109
Degree $2$
Conductor $65520$
Sign $-1$
Analytic cond. $523.179$
Root an. cond. $22.8731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 2·11-s − 13-s + 2·17-s + 2·19-s + 8·23-s + 25-s + 35-s + 10·37-s − 10·41-s − 8·43-s + 49-s + 2·53-s − 2·55-s + 4·59-s − 8·61-s − 65-s + 6·67-s − 10·73-s − 2·77-s − 8·79-s − 2·83-s + 2·85-s − 18·89-s − 91-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 0.603·11-s − 0.277·13-s + 0.485·17-s + 0.458·19-s + 1.66·23-s + 1/5·25-s + 0.169·35-s + 1.64·37-s − 1.56·41-s − 1.21·43-s + 1/7·49-s + 0.274·53-s − 0.269·55-s + 0.520·59-s − 1.02·61-s − 0.124·65-s + 0.733·67-s − 1.17·73-s − 0.227·77-s − 0.900·79-s − 0.219·83-s + 0.216·85-s − 1.90·89-s − 0.104·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65520\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(523.179\)
Root analytic conductor: \(22.8731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 65520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61362183554351, −13.84652775035255, −13.48364042341606, −12.99323026530463, −12.57275205399634, −11.89843935350300, −11.36828906758054, −11.04633349220819, −10.23876336062036, −10.01042900005566, −9.428647776389698, −8.768722695715574, −8.384453486843900, −7.672892177950284, −7.279476171088258, −6.672497766886419, −6.070504512885270, −5.294782324549432, −5.121084692415246, −4.466982657146681, −3.646323235963986, −2.914291868185751, −2.570140666681057, −1.578529104154383, −1.082224922981173, 0, 1.082224922981173, 1.578529104154383, 2.570140666681057, 2.914291868185751, 3.646323235963986, 4.466982657146681, 5.121084692415246, 5.294782324549432, 6.070504512885270, 6.672497766886419, 7.279476171088258, 7.672892177950284, 8.384453486843900, 8.768722695715574, 9.428647776389698, 10.01042900005566, 10.23876336062036, 11.04633349220819, 11.36828906758054, 11.89843935350300, 12.57275205399634, 12.99323026530463, 13.48364042341606, 13.84652775035255, 14.61362183554351

Graph of the $Z$-function along the critical line