Properties

Label 2-64896-1.1-c1-0-24
Degree $2$
Conductor $64896$
Sign $-1$
Analytic cond. $518.197$
Root an. cond. $22.7639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 4·7-s + 9-s + 2·15-s − 2·17-s + 6·19-s − 4·21-s − 8·23-s − 25-s + 27-s − 4·29-s − 4·31-s − 8·35-s + 6·37-s − 8·43-s + 2·45-s + 9·49-s − 2·51-s + 6·57-s + 8·59-s + 10·61-s − 4·63-s + 14·67-s − 8·69-s + 8·71-s + 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.516·15-s − 0.485·17-s + 1.37·19-s − 0.872·21-s − 1.66·23-s − 1/5·25-s + 0.192·27-s − 0.742·29-s − 0.718·31-s − 1.35·35-s + 0.986·37-s − 1.21·43-s + 0.298·45-s + 9/7·49-s − 0.280·51-s + 0.794·57-s + 1.04·59-s + 1.28·61-s − 0.503·63-s + 1.71·67-s − 0.963·69-s + 0.949·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64896\)    =    \(2^{7} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(518.197\)
Root analytic conductor: \(22.7639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.52958038657213, −13.73472475317353, −13.46400471253388, −13.24516720702782, −12.50547665746361, −12.16841863374001, −11.42676944692504, −10.91316906807466, −10.00419971305839, −9.836061304374459, −9.547045055464924, −9.067343606837415, −8.258907846575872, −7.858855352357485, −7.083484924750797, −6.658133262803859, −6.145932572829141, −5.548853034748993, −5.138941675930295, −4.004714116328390, −3.717495186629058, −3.098134683412610, −2.298624245255489, −1.997520719267049, −0.9461887930831782, 0, 0.9461887930831782, 1.997520719267049, 2.298624245255489, 3.098134683412610, 3.717495186629058, 4.004714116328390, 5.138941675930295, 5.548853034748993, 6.145932572829141, 6.658133262803859, 7.083484924750797, 7.858855352357485, 8.258907846575872, 9.067343606837415, 9.547045055464924, 9.836061304374459, 10.00419971305839, 10.91316906807466, 11.42676944692504, 12.16841863374001, 12.50547665746361, 13.24516720702782, 13.46400471253388, 13.73472475317353, 14.52958038657213

Graph of the $Z$-function along the critical line