Properties

Label 2-64680-1.1-c1-0-74
Degree $2$
Conductor $64680$
Sign $-1$
Analytic cond. $516.472$
Root an. cond. $22.7260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s + 11-s + 2·13-s − 15-s + 2·17-s − 4·19-s + 25-s − 27-s + 2·29-s + 8·31-s − 33-s − 2·37-s − 2·39-s + 10·41-s − 12·43-s + 45-s − 2·51-s + 2·53-s + 55-s + 4·57-s + 6·61-s + 2·65-s − 8·67-s − 8·71-s − 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 0.258·15-s + 0.485·17-s − 0.917·19-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.174·33-s − 0.328·37-s − 0.320·39-s + 1.56·41-s − 1.82·43-s + 0.149·45-s − 0.280·51-s + 0.274·53-s + 0.134·55-s + 0.529·57-s + 0.768·61-s + 0.248·65-s − 0.977·67-s − 0.949·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64680\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(516.472\)
Root analytic conductor: \(22.7260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55160307807570, −13.87679872047511, −13.43176472165983, −13.03800339106506, −12.39564558500952, −11.93130968573829, −11.56566698029174, −10.72082927083595, −10.63202383641639, −9.881224144227269, −9.547910706940096, −8.785415147921908, −8.349651022507967, −7.833723267933731, −6.997085186376213, −6.598693699401626, −6.098325946229670, −5.616854253677544, −4.966476943363612, −4.364828906440225, −3.854593972443804, −3.023993712272886, −2.412558189574237, −1.525864088985799, −1.023512521918839, 0, 1.023512521918839, 1.525864088985799, 2.412558189574237, 3.023993712272886, 3.854593972443804, 4.364828906440225, 4.966476943363612, 5.616854253677544, 6.098325946229670, 6.598693699401626, 6.997085186376213, 7.833723267933731, 8.349651022507967, 8.785415147921908, 9.547910706940096, 9.881224144227269, 10.63202383641639, 10.72082927083595, 11.56566698029174, 11.93130968573829, 12.39564558500952, 13.03800339106506, 13.43176472165983, 13.87679872047511, 14.55160307807570

Graph of the $Z$-function along the critical line