Properties

Label 2-64350-1.1-c1-0-99
Degree $2$
Conductor $64350$
Sign $-1$
Analytic cond. $513.837$
Root an. cond. $22.6679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·7-s + 8-s + 11-s − 13-s − 4·14-s + 16-s + 7·17-s + 8·19-s + 22-s − 9·23-s − 26-s − 4·28-s − 6·29-s + 32-s + 7·34-s − 11·37-s + 8·38-s − 2·41-s + 2·43-s + 44-s − 9·46-s + 8·47-s + 9·49-s − 52-s − 9·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.51·7-s + 0.353·8-s + 0.301·11-s − 0.277·13-s − 1.06·14-s + 1/4·16-s + 1.69·17-s + 1.83·19-s + 0.213·22-s − 1.87·23-s − 0.196·26-s − 0.755·28-s − 1.11·29-s + 0.176·32-s + 1.20·34-s − 1.80·37-s + 1.29·38-s − 0.312·41-s + 0.304·43-s + 0.150·44-s − 1.32·46-s + 1.16·47-s + 9/7·49-s − 0.138·52-s − 1.23·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64350\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(513.837\)
Root analytic conductor: \(22.6679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28511167253470, −13.94876127241979, −13.66125810620399, −12.85162948875204, −12.46683288514088, −12.13816268198900, −11.66622668858881, −11.10309799824051, −10.16141291480058, −9.896447269084975, −9.715388113521891, −8.930983258275800, −8.208695931960156, −7.487010722903522, −7.257879725842096, −6.580925726026295, −5.979142752927031, −5.442142644862246, −5.251805948842613, −4.057218549247820, −3.652478069352071, −3.302794089501224, −2.631382835933571, −1.801079311650731, −0.9771227883570064, 0, 0.9771227883570064, 1.801079311650731, 2.631382835933571, 3.302794089501224, 3.652478069352071, 4.057218549247820, 5.251805948842613, 5.442142644862246, 5.979142752927031, 6.580925726026295, 7.257879725842096, 7.487010722903522, 8.208695931960156, 8.930983258275800, 9.715388113521891, 9.896447269084975, 10.16141291480058, 11.10309799824051, 11.66622668858881, 12.13816268198900, 12.46683288514088, 12.85162948875204, 13.66125810620399, 13.94876127241979, 14.28511167253470

Graph of the $Z$-function along the critical line