Properties

Label 2-60840-1.1-c1-0-26
Degree $2$
Conductor $60840$
Sign $1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·11-s + 2·17-s + 4·19-s − 4·23-s + 25-s + 6·29-s + 4·31-s − 6·37-s − 2·41-s + 12·43-s + 8·47-s − 7·49-s − 14·53-s − 4·55-s + 12·59-s − 2·61-s + 8·71-s + 2·73-s + 8·79-s + 12·83-s − 2·85-s + 6·89-s − 4·95-s + 10·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.20·11-s + 0.485·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s + 0.718·31-s − 0.986·37-s − 0.312·41-s + 1.82·43-s + 1.16·47-s − 49-s − 1.92·53-s − 0.539·55-s + 1.56·59-s − 0.256·61-s + 0.949·71-s + 0.234·73-s + 0.900·79-s + 1.31·83-s − 0.216·85-s + 0.635·89-s − 0.410·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.801330601\)
\(L(\frac12)\) \(\approx\) \(2.801330601\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22776809394838, −13.98284495587127, −13.40404660108205, −12.56280777151816, −12.15046585624139, −11.95256260101707, −11.30265587877378, −10.80353318476936, −10.16891260361176, −9.648880477285926, −9.218633144947354, −8.591381357527661, −8.065610953144658, −7.565302020933791, −6.993281442035529, −6.348624099940461, −6.020370685803276, −5.122452377424278, −4.710050861735185, −3.894765329109837, −3.580046762927951, −2.847689976966201, −2.054144553812640, −1.201256238159983, −0.6459778893542917, 0.6459778893542917, 1.201256238159983, 2.054144553812640, 2.847689976966201, 3.580046762927951, 3.894765329109837, 4.710050861735185, 5.122452377424278, 6.020370685803276, 6.348624099940461, 6.993281442035529, 7.565302020933791, 8.065610953144658, 8.591381357527661, 9.218633144947354, 9.648880477285926, 10.16891260361176, 10.80353318476936, 11.30265587877378, 11.95256260101707, 12.15046585624139, 12.56280777151816, 13.40404660108205, 13.98284495587127, 14.22776809394838

Graph of the $Z$-function along the critical line