Properties

Label 2-60840-1.1-c1-0-39
Degree $2$
Conductor $60840$
Sign $-1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·7-s + 3·11-s + 3·17-s − 5·19-s − 3·23-s + 25-s + 5·29-s − 3·35-s − 11·37-s + 5·41-s − 7·43-s + 8·47-s + 2·49-s + 10·53-s + 3·55-s + 59-s − 5·61-s + 11·67-s − 3·71-s − 6·73-s − 9·77-s + 16·83-s + 3·85-s + 13·89-s − 5·95-s − 7·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13·7-s + 0.904·11-s + 0.727·17-s − 1.14·19-s − 0.625·23-s + 1/5·25-s + 0.928·29-s − 0.507·35-s − 1.80·37-s + 0.780·41-s − 1.06·43-s + 1.16·47-s + 2/7·49-s + 1.37·53-s + 0.404·55-s + 0.130·59-s − 0.640·61-s + 1.34·67-s − 0.356·71-s − 0.702·73-s − 1.02·77-s + 1.75·83-s + 0.325·85-s + 1.37·89-s − 0.512·95-s − 0.710·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56274936117247, −13.85336844735148, −13.71740214338548, −12.99110936178738, −12.51408495763901, −12.05964339277820, −11.75013421468679, −10.79178087022086, −10.35132213720622, −10.08283746251689, −9.314522685009025, −9.066404660360468, −8.424846479604267, −7.866152887852278, −7.027522759381802, −6.598278042384818, −6.298015266977554, −5.598669694232354, −5.088572145628193, −4.135565779152164, −3.818817644064937, −3.110080598340847, −2.449853188827340, −1.738208269664773, −0.9272916187135996, 0, 0.9272916187135996, 1.738208269664773, 2.449853188827340, 3.110080598340847, 3.818817644064937, 4.135565779152164, 5.088572145628193, 5.598669694232354, 6.298015266977554, 6.598278042384818, 7.027522759381802, 7.866152887852278, 8.424846479604267, 9.066404660360468, 9.314522685009025, 10.08283746251689, 10.35132213720622, 10.79178087022086, 11.75013421468679, 12.05964339277820, 12.51408495763901, 12.99110936178738, 13.71740214338548, 13.85336844735148, 14.56274936117247

Graph of the $Z$-function along the critical line