Properties

Label 2-58800-1.1-c1-0-201
Degree $2$
Conductor $58800$
Sign $-1$
Analytic cond. $469.520$
Root an. cond. $21.6684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 6·11-s + 2·13-s − 4·19-s − 6·23-s − 27-s + 6·29-s + 8·31-s − 6·33-s − 2·37-s − 2·39-s − 12·41-s − 4·43-s − 12·47-s + 6·53-s + 4·57-s + 10·61-s + 8·67-s + 6·69-s − 6·71-s − 10·73-s + 4·79-s + 81-s + 12·83-s − 6·87-s − 12·89-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.80·11-s + 0.554·13-s − 0.917·19-s − 1.25·23-s − 0.192·27-s + 1.11·29-s + 1.43·31-s − 1.04·33-s − 0.328·37-s − 0.320·39-s − 1.87·41-s − 0.609·43-s − 1.75·47-s + 0.824·53-s + 0.529·57-s + 1.28·61-s + 0.977·67-s + 0.722·69-s − 0.712·71-s − 1.17·73-s + 0.450·79-s + 1/9·81-s + 1.31·83-s − 0.643·87-s − 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(469.520\)
Root analytic conductor: \(21.6684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 58800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.63409763471826, −14.00108859728393, −13.64590361435583, −13.10759994685088, −12.33580849103462, −12.02548610623521, −11.56729426613310, −11.25368520380226, −10.35649564422114, −10.06095692007352, −9.633835864183000, −8.697934655408510, −8.512210458143715, −7.988287179343081, −6.914938880689256, −6.661382442008727, −6.289054374157980, −5.712198073393543, −4.847744289901779, −4.431494259642328, −3.780666108284599, −3.335964479388109, −2.278706994282686, −1.582587262734249, −1.008387036642399, 0, 1.008387036642399, 1.582587262734249, 2.278706994282686, 3.335964479388109, 3.780666108284599, 4.431494259642328, 4.847744289901779, 5.712198073393543, 6.289054374157980, 6.661382442008727, 6.914938880689256, 7.988287179343081, 8.512210458143715, 8.697934655408510, 9.633835864183000, 10.06095692007352, 10.35649564422114, 11.25368520380226, 11.56729426613310, 12.02548610623521, 12.33580849103462, 13.10759994685088, 13.64590361435583, 14.00108859728393, 14.63409763471826

Graph of the $Z$-function along the critical line