Properties

Label 2-5760-1.1-c1-0-30
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 2·11-s − 2·13-s + 2·17-s + 2·19-s − 2·23-s + 25-s + 6·29-s + 4·31-s + 2·35-s + 2·37-s + 10·41-s − 8·43-s − 2·47-s − 3·49-s − 6·53-s + 2·55-s − 2·59-s − 10·61-s − 2·65-s + 8·67-s + 8·71-s − 6·73-s + 4·77-s + 16·79-s + 12·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 0.603·11-s − 0.554·13-s + 0.485·17-s + 0.458·19-s − 0.417·23-s + 1/5·25-s + 1.11·29-s + 0.718·31-s + 0.338·35-s + 0.328·37-s + 1.56·41-s − 1.21·43-s − 0.291·47-s − 3/7·49-s − 0.824·53-s + 0.269·55-s − 0.260·59-s − 1.28·61-s − 0.248·65-s + 0.977·67-s + 0.949·71-s − 0.702·73-s + 0.455·77-s + 1.80·79-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.620533817\)
\(L(\frac12)\) \(\approx\) \(2.620533817\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.003283416293369467106045226942, −7.58032014435231381189302135809, −6.54514557845037561239123661579, −6.10881509260436238779041595998, −5.04718712383865571252012090799, −4.69512401337153497182389132984, −3.65208714264992503032906694543, −2.73603985887109983766691810797, −1.81678134669354500784128367893, −0.905007767632968015563896492703, 0.905007767632968015563896492703, 1.81678134669354500784128367893, 2.73603985887109983766691810797, 3.65208714264992503032906694543, 4.69512401337153497182389132984, 5.04718712383865571252012090799, 6.10881509260436238779041595998, 6.54514557845037561239123661579, 7.58032014435231381189302135809, 8.003283416293369467106045226942

Graph of the $Z$-function along the critical line