Properties

Label 2-56628-1.1-c1-0-25
Degree $2$
Conductor $56628$
Sign $1$
Analytic cond. $452.176$
Root an. cond. $21.2644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 2·7-s − 13-s − 2·19-s + 3·23-s + 4·25-s − 6·29-s − 31-s + 6·35-s − 7·37-s + 6·41-s − 8·43-s − 12·47-s − 3·49-s + 6·53-s − 9·59-s − 2·61-s + 3·65-s − 7·67-s + 3·71-s − 8·73-s + 4·79-s − 12·83-s + 15·89-s + 2·91-s + 6·95-s − 13·97-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.755·7-s − 0.277·13-s − 0.458·19-s + 0.625·23-s + 4/5·25-s − 1.11·29-s − 0.179·31-s + 1.01·35-s − 1.15·37-s + 0.937·41-s − 1.21·43-s − 1.75·47-s − 3/7·49-s + 0.824·53-s − 1.17·59-s − 0.256·61-s + 0.372·65-s − 0.855·67-s + 0.356·71-s − 0.936·73-s + 0.450·79-s − 1.31·83-s + 1.58·89-s + 0.209·91-s + 0.615·95-s − 1.31·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56628 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56628 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56628\)    =    \(2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(452.176\)
Root analytic conductor: \(21.2644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 56628,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95527539463591, −14.62868329887374, −13.77120035139687, −13.30871668750768, −12.72222743207289, −12.43406970657944, −11.81202867693304, −11.33353417716574, −10.95640026129164, −10.24942685736327, −9.815224420094520, −9.040345334111940, −8.799993896020893, −7.907113771795346, −7.747314766533202, −6.925081096959185, −6.696105996851125, −5.896997350539964, −5.228633547290170, −4.590378323243598, −4.050916613320807, −3.339816745746097, −3.119688236507481, −2.113270921248683, −1.282284422516678, 0, 0, 1.282284422516678, 2.113270921248683, 3.119688236507481, 3.339816745746097, 4.050916613320807, 4.590378323243598, 5.228633547290170, 5.896997350539964, 6.696105996851125, 6.925081096959185, 7.747314766533202, 7.907113771795346, 8.799993896020893, 9.040345334111940, 9.815224420094520, 10.24942685736327, 10.95640026129164, 11.33353417716574, 11.81202867693304, 12.43406970657944, 12.72222743207289, 13.30871668750768, 13.77120035139687, 14.62868329887374, 14.95527539463591

Graph of the $Z$-function along the critical line