Properties

Label 2-558-1.1-c1-0-8
Degree $2$
Conductor $558$
Sign $-1$
Analytic cond. $4.45565$
Root an. cond. $2.11084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 2·7-s − 8-s + 10-s + 3·11-s − 13-s + 2·14-s + 16-s − 3·17-s − 5·19-s − 20-s − 3·22-s − 4·23-s − 4·25-s + 26-s − 2·28-s + 31-s − 32-s + 3·34-s + 2·35-s − 2·37-s + 5·38-s + 40-s − 2·41-s − 6·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s + 0.904·11-s − 0.277·13-s + 0.534·14-s + 1/4·16-s − 0.727·17-s − 1.14·19-s − 0.223·20-s − 0.639·22-s − 0.834·23-s − 4/5·25-s + 0.196·26-s − 0.377·28-s + 0.179·31-s − 0.176·32-s + 0.514·34-s + 0.338·35-s − 0.328·37-s + 0.811·38-s + 0.158·40-s − 0.312·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(558\)    =    \(2 \cdot 3^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(4.45565\)
Root analytic conductor: \(2.11084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 558,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
31 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20652931831257765256019425609, −9.428785894541763421685548936934, −8.647434287101783164212144500439, −7.75039651675267116267405555698, −6.69336973279246967195994765885, −6.11986390470039350067199117186, −4.47037368633615481925871930399, −3.43104030037094158484756606346, −1.97053820954155454445581154797, 0, 1.97053820954155454445581154797, 3.43104030037094158484756606346, 4.47037368633615481925871930399, 6.11986390470039350067199117186, 6.69336973279246967195994765885, 7.75039651675267116267405555698, 8.647434287101783164212144500439, 9.428785894541763421685548936934, 10.20652931831257765256019425609

Graph of the $Z$-function along the critical line