L(s) = 1 | − 2-s + 4-s − 5-s − 2·7-s − 8-s + 10-s + 3·11-s − 13-s + 2·14-s + 16-s − 3·17-s − 5·19-s − 20-s − 3·22-s − 4·23-s − 4·25-s + 26-s − 2·28-s + 31-s − 32-s + 3·34-s + 2·35-s − 2·37-s + 5·38-s + 40-s − 2·41-s − 6·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s + 0.904·11-s − 0.277·13-s + 0.534·14-s + 1/4·16-s − 0.727·17-s − 1.14·19-s − 0.223·20-s − 0.639·22-s − 0.834·23-s − 4/5·25-s + 0.196·26-s − 0.377·28-s + 0.179·31-s − 0.176·32-s + 0.514·34-s + 0.338·35-s − 0.328·37-s + 0.811·38-s + 0.158·40-s − 0.312·41-s − 0.914·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 \) | |
| 31 | \( 1 - T \) | |
good | 5 | \( 1 + T + p T^{2} \) | 1.5.b |
| 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 11 | \( 1 - 3 T + p T^{2} \) | 1.11.ad |
| 13 | \( 1 + T + p T^{2} \) | 1.13.b |
| 17 | \( 1 + 3 T + p T^{2} \) | 1.17.d |
| 19 | \( 1 + 5 T + p T^{2} \) | 1.19.f |
| 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e |
| 29 | \( 1 + p T^{2} \) | 1.29.a |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c |
| 43 | \( 1 + 6 T + p T^{2} \) | 1.43.g |
| 47 | \( 1 - 7 T + p T^{2} \) | 1.47.ah |
| 53 | \( 1 + 14 T + p T^{2} \) | 1.53.o |
| 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k |
| 61 | \( 1 - 7 T + p T^{2} \) | 1.61.ah |
| 67 | \( 1 + 7 T + p T^{2} \) | 1.67.h |
| 71 | \( 1 - 3 T + p T^{2} \) | 1.71.ad |
| 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g |
| 79 | \( 1 - 15 T + p T^{2} \) | 1.79.ap |
| 83 | \( 1 - T + p T^{2} \) | 1.83.ab |
| 89 | \( 1 + 10 T + p T^{2} \) | 1.89.k |
| 97 | \( 1 - 13 T + p T^{2} \) | 1.97.an |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20652931831257765256019425609, −9.428785894541763421685548936934, −8.647434287101783164212144500439, −7.75039651675267116267405555698, −6.69336973279246967195994765885, −6.11986390470039350067199117186, −4.47037368633615481925871930399, −3.43104030037094158484756606346, −1.97053820954155454445581154797, 0,
1.97053820954155454445581154797, 3.43104030037094158484756606346, 4.47037368633615481925871930399, 6.11986390470039350067199117186, 6.69336973279246967195994765885, 7.75039651675267116267405555698, 8.647434287101783164212144500439, 9.428785894541763421685548936934, 10.20652931831257765256019425609