Properties

Label 2-55506-1.1-c1-0-24
Degree $2$
Conductor $55506$
Sign $-1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s + 11-s + 12-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s − 20-s − 21-s − 22-s − 2·23-s − 24-s − 4·25-s + 27-s − 28-s + 30-s + 6·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.229·19-s − 0.223·20-s − 0.218·21-s − 0.213·22-s − 0.417·23-s − 0.204·24-s − 4/5·25-s + 0.192·27-s − 0.188·28-s + 0.182·30-s + 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 - T \)
29 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 2 T + p T^{2} \) 1.23.c
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69986832661895, −14.28244597265977, −13.55543791362227, −13.24209123810688, −12.51024049693768, −12.09249715566418, −11.48991967983206, −11.17631029835791, −10.27284129097436, −10.02366674030014, −9.457160244195382, −9.014977606322285, −8.335438748453962, −7.886834945281114, −7.626027584307095, −6.768183899814762, −6.331890637088342, −5.868546093869051, −4.792253284958957, −4.425931919562064, −3.397904619338059, −3.316452058041775, −2.331329143642279, −1.754858027948629, −0.8914482064108276, 0, 0.8914482064108276, 1.754858027948629, 2.331329143642279, 3.316452058041775, 3.397904619338059, 4.425931919562064, 4.792253284958957, 5.868546093869051, 6.331890637088342, 6.768183899814762, 7.626027584307095, 7.886834945281114, 8.335438748453962, 9.014977606322285, 9.457160244195382, 10.02366674030014, 10.27284129097436, 11.17631029835791, 11.48991967983206, 12.09249715566418, 12.51024049693768, 13.24209123810688, 13.55543791362227, 14.28244597265977, 14.69986832661895

Graph of the $Z$-function along the critical line