Properties

Label 2-55488-1.1-c1-0-90
Degree $2$
Conductor $55488$
Sign $-1$
Analytic cond. $443.073$
Root an. cond. $21.0493$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s + 5·11-s + 5·13-s + 15-s − 7·19-s − 2·21-s + 3·23-s − 4·25-s − 27-s + 2·29-s − 2·31-s − 5·33-s − 2·35-s − 8·37-s − 5·39-s + 7·41-s − 5·43-s − 45-s − 8·47-s − 3·49-s − 4·53-s − 5·55-s + 7·57-s + 14·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.50·11-s + 1.38·13-s + 0.258·15-s − 1.60·19-s − 0.436·21-s + 0.625·23-s − 4/5·25-s − 0.192·27-s + 0.371·29-s − 0.359·31-s − 0.870·33-s − 0.338·35-s − 1.31·37-s − 0.800·39-s + 1.09·41-s − 0.762·43-s − 0.149·45-s − 1.16·47-s − 3/7·49-s − 0.549·53-s − 0.674·55-s + 0.927·57-s + 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55488\)    =    \(2^{6} \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(443.073\)
Root analytic conductor: \(21.0493\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73027884988739, −14.19420253089629, −13.69840790513416, −12.99983082200862, −12.61462308865591, −12.02341699514025, −11.39582242249178, −11.20110081294381, −10.86881625194670, −10.03653945001605, −9.561536590810441, −8.719398151980262, −8.494579079081250, −8.045499283352446, −7.124577958357988, −6.660970230472950, −6.309965208926891, −5.622861893884817, −4.984580152868217, −4.301791389401078, −3.862499147856973, −3.448696181067093, −2.241410346741991, −1.561186637898812, −1.052851979309691, 0, 1.052851979309691, 1.561186637898812, 2.241410346741991, 3.448696181067093, 3.862499147856973, 4.301791389401078, 4.984580152868217, 5.622861893884817, 6.309965208926891, 6.660970230472950, 7.124577958357988, 8.045499283352446, 8.494579079081250, 8.719398151980262, 9.561536590810441, 10.03653945001605, 10.86881625194670, 11.20110081294381, 11.39582242249178, 12.02341699514025, 12.61462308865591, 12.99983082200862, 13.69840790513416, 14.19420253089629, 14.73027884988739

Graph of the $Z$-function along the critical line