Properties

Label 2-5461-1.1-c1-0-51
Degree $2$
Conductor $5461$
Sign $1$
Analytic cond. $43.6063$
Root an. cond. $6.60350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 5-s + 3·7-s − 2·9-s − 4·11-s + 2·12-s + 2·13-s + 15-s + 4·16-s − 5·17-s − 4·19-s + 2·20-s − 3·21-s + 2·23-s − 4·25-s + 5·27-s − 6·28-s + 5·29-s + 4·33-s − 3·35-s + 4·36-s − 10·37-s − 2·39-s + 9·41-s − 43-s + 8·44-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 0.447·5-s + 1.13·7-s − 2/3·9-s − 1.20·11-s + 0.577·12-s + 0.554·13-s + 0.258·15-s + 16-s − 1.21·17-s − 0.917·19-s + 0.447·20-s − 0.654·21-s + 0.417·23-s − 4/5·25-s + 0.962·27-s − 1.13·28-s + 0.928·29-s + 0.696·33-s − 0.507·35-s + 2/3·36-s − 1.64·37-s − 0.320·39-s + 1.40·41-s − 0.152·43-s + 1.20·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5461 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5461 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5461\)    =    \(43 \cdot 127\)
Sign: $1$
Analytic conductor: \(43.6063\)
Root analytic conductor: \(6.60350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5461,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4933324357\)
\(L(\frac12)\) \(\approx\) \(0.4933324357\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad43 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.286448279596499719489306241797, −7.74230774701709757931735272446, −6.61489421138399010298982051619, −5.88854355780383798015287745018, −4.95676835726116893655046236323, −4.82052656953891632090909441236, −3.90395447586184915953974724483, −2.87963347072967921328978658308, −1.75290471158204675173427738463, −0.38495690831672330251391784244, 0.38495690831672330251391784244, 1.75290471158204675173427738463, 2.87963347072967921328978658308, 3.90395447586184915953974724483, 4.82052656953891632090909441236, 4.95676835726116893655046236323, 5.88854355780383798015287745018, 6.61489421138399010298982051619, 7.74230774701709757931735272446, 8.286448279596499719489306241797

Graph of the $Z$-function along the critical line