Properties

Label 2-54450-1.1-c1-0-147
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 6·13-s + 16-s + 6·17-s − 6·23-s − 6·26-s + 4·31-s + 32-s + 6·34-s + 2·37-s − 12·41-s + 12·43-s − 6·46-s + 6·47-s − 7·49-s − 6·52-s + 6·53-s + 4·62-s + 64-s + 14·67-s + 6·68-s − 6·73-s + 2·74-s − 12·79-s − 12·82-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.66·13-s + 1/4·16-s + 1.45·17-s − 1.25·23-s − 1.17·26-s + 0.718·31-s + 0.176·32-s + 1.02·34-s + 0.328·37-s − 1.87·41-s + 1.82·43-s − 0.884·46-s + 0.875·47-s − 49-s − 0.832·52-s + 0.824·53-s + 0.508·62-s + 1/8·64-s + 1.71·67-s + 0.727·68-s − 0.702·73-s + 0.232·74-s − 1.35·79-s − 1.32·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53110095641540, −14.10485287553271, −13.95591308877725, −12.99572895363944, −12.67597610397206, −12.10582359791386, −11.81710658748060, −11.34577418530119, −10.38232444673176, −10.12091841914436, −9.754649224937193, −9.021928138184290, −8.239303154927696, −7.752809567218756, −7.350213685393551, −6.722680933152030, −6.103892198055056, −5.402031725102612, −5.187530950491740, −4.314773974452775, −3.945634057516035, −3.069305252736910, −2.604602322227208, −1.919082902949382, −1.048213277270329, 0, 1.048213277270329, 1.919082902949382, 2.604602322227208, 3.069305252736910, 3.945634057516035, 4.314773974452775, 5.187530950491740, 5.402031725102612, 6.103892198055056, 6.722680933152030, 7.350213685393551, 7.752809567218756, 8.239303154927696, 9.021928138184290, 9.754649224937193, 10.12091841914436, 10.38232444673176, 11.34577418530119, 11.81710658748060, 12.10582359791386, 12.67597610397206, 12.99572895363944, 13.95591308877725, 14.10485287553271, 14.53110095641540

Graph of the $Z$-function along the critical line