Properties

Label 2-54080-1.1-c1-0-7
Degree $2$
Conductor $54080$
Sign $1$
Analytic cond. $431.830$
Root an. cond. $20.7805$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 7-s − 2·9-s + 3·11-s − 15-s − 3·17-s − 7·19-s − 21-s − 3·23-s + 25-s + 5·27-s − 3·29-s + 4·31-s − 3·33-s + 35-s − 7·37-s + 9·41-s − 11·43-s − 2·45-s − 6·49-s + 3·51-s + 6·53-s + 3·55-s + 7·57-s − 3·59-s − 11·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.377·7-s − 2/3·9-s + 0.904·11-s − 0.258·15-s − 0.727·17-s − 1.60·19-s − 0.218·21-s − 0.625·23-s + 1/5·25-s + 0.962·27-s − 0.557·29-s + 0.718·31-s − 0.522·33-s + 0.169·35-s − 1.15·37-s + 1.40·41-s − 1.67·43-s − 0.298·45-s − 6/7·49-s + 0.420·51-s + 0.824·53-s + 0.404·55-s + 0.927·57-s − 0.390·59-s − 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54080\)    =    \(2^{6} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(431.830\)
Root analytic conductor: \(20.7805\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9853818981\)
\(L(\frac12)\) \(\approx\) \(0.9853818981\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.33970098333280, −14.02331087400111, −13.43857750403240, −12.87478383339794, −12.29072070450517, −11.88969955858104, −11.24787571717119, −11.02250900006252, −10.33346590580732, −9.943762353064706, −9.031728177179526, −8.839538925825915, −8.278775100445448, −7.633409088800115, −6.745109327149849, −6.470060015713274, −5.975190930047349, −5.409474979599959, −4.647089536221756, −4.305943791479944, −3.509621986223500, −2.717019973229170, −1.985245983753143, −1.463525478288687, −0.3481098279981124, 0.3481098279981124, 1.463525478288687, 1.985245983753143, 2.717019973229170, 3.509621986223500, 4.305943791479944, 4.647089536221756, 5.409474979599959, 5.975190930047349, 6.470060015713274, 6.745109327149849, 7.633409088800115, 8.278775100445448, 8.839538925825915, 9.031728177179526, 9.943762353064706, 10.33346590580732, 11.02250900006252, 11.24787571717119, 11.88969955858104, 12.29072070450517, 12.87478383339794, 13.43857750403240, 14.02331087400111, 14.33970098333280

Graph of the $Z$-function along the critical line