Properties

Label 2-53958-1.1-c1-0-3
Degree $2$
Conductor $53958$
Sign $1$
Analytic cond. $430.856$
Root an. cond. $20.7570$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 2·5-s + 6-s + 7-s + 8-s + 9-s − 2·10-s − 4·11-s + 12-s − 4·13-s + 14-s − 2·15-s + 16-s − 17-s + 18-s − 3·19-s − 2·20-s + 21-s − 4·22-s + 24-s − 25-s − 4·26-s + 27-s + 28-s − 6·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 1.20·11-s + 0.288·12-s − 1.10·13-s + 0.267·14-s − 0.516·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.688·19-s − 0.447·20-s + 0.218·21-s − 0.852·22-s + 0.204·24-s − 1/5·25-s − 0.784·26-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53958 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53958 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(53958\)    =    \(2 \cdot 3 \cdot 17 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(430.856\)
Root analytic conductor: \(20.7570\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 53958,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.653498431\)
\(L(\frac12)\) \(\approx\) \(1.653498431\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
17 \( 1 + T \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 3 T + p T^{2} \) 1.19.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.59441256481312, −13.99037447341482, −13.32667042321618, −12.88763955275737, −12.60016215176250, −11.93895319630165, −11.40795985500082, −10.94416791644384, −10.49472843676304, −9.702782325956783, −9.389232908774729, −8.452608384702924, −8.012162505763057, −7.610271902973523, −7.280853440223941, −6.463859220504275, −5.844420109156968, −5.079549244143838, −4.638067636325898, −4.218520063420016, −3.413864107954750, −2.932730175738162, −2.224699116061241, −1.713446532667137, −0.3519215995162802, 0.3519215995162802, 1.713446532667137, 2.224699116061241, 2.932730175738162, 3.413864107954750, 4.218520063420016, 4.638067636325898, 5.079549244143838, 5.844420109156968, 6.463859220504275, 7.280853440223941, 7.610271902973523, 8.012162505763057, 8.452608384702924, 9.389232908774729, 9.702782325956783, 10.49472843676304, 10.94416791644384, 11.40795985500082, 11.93895319630165, 12.60016215176250, 12.88763955275737, 13.32667042321618, 13.99037447341482, 14.59441256481312

Graph of the $Z$-function along the critical line