Properties

Label 2-53200-1.1-c1-0-66
Degree $2$
Conductor $53200$
Sign $-1$
Analytic cond. $424.804$
Root an. cond. $20.6107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 7-s + 9-s + 3·11-s + 7·13-s − 3·17-s − 19-s − 2·21-s − 9·23-s + 4·27-s − 9·29-s − 8·31-s − 6·33-s + 4·37-s − 14·39-s − 3·41-s − 4·43-s + 6·47-s + 49-s + 6·51-s + 12·53-s + 2·57-s + 9·59-s − 61-s + 63-s − 67-s + 18·69-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.377·7-s + 1/3·9-s + 0.904·11-s + 1.94·13-s − 0.727·17-s − 0.229·19-s − 0.436·21-s − 1.87·23-s + 0.769·27-s − 1.67·29-s − 1.43·31-s − 1.04·33-s + 0.657·37-s − 2.24·39-s − 0.468·41-s − 0.609·43-s + 0.875·47-s + 1/7·49-s + 0.840·51-s + 1.64·53-s + 0.264·57-s + 1.17·59-s − 0.128·61-s + 0.125·63-s − 0.122·67-s + 2.16·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(53200\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(424.804\)
Root analytic conductor: \(20.6107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 53200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74973825054985, −14.20620814291390, −13.46925307055183, −13.32569854816496, −12.58102105693691, −11.90479049395628, −11.61844217803659, −11.21652228960052, −10.66196477196631, −10.40399200098941, −9.425285236117360, −9.037004580782253, −8.457358955400439, −7.979230582227421, −7.148421653550240, −6.629763343120753, −6.092353559899144, −5.694743976997993, −5.294604916632715, −4.174604248163433, −4.047708744595523, −3.418079153497678, −2.169703325432224, −1.672834242875564, −0.8739409019482574, 0, 0.8739409019482574, 1.672834242875564, 2.169703325432224, 3.418079153497678, 4.047708744595523, 4.174604248163433, 5.294604916632715, 5.694743976997993, 6.092353559899144, 6.629763343120753, 7.148421653550240, 7.979230582227421, 8.457358955400439, 9.037004580782253, 9.425285236117360, 10.40399200098941, 10.66196477196631, 11.21652228960052, 11.61844217803659, 11.90479049395628, 12.58102105693691, 13.32569854816496, 13.46925307055183, 14.20620814291390, 14.74973825054985

Graph of the $Z$-function along the critical line