Properties

Label 2-52800-1.1-c1-0-123
Degree $2$
Conductor $52800$
Sign $-1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 11-s + 17-s − 19-s − 21-s − 5·23-s − 27-s + 6·29-s − 6·31-s − 33-s + 9·37-s − 5·41-s + 4·43-s − 7·47-s − 6·49-s − 51-s − 4·53-s + 57-s − 9·59-s + 12·61-s + 63-s + 4·67-s + 5·69-s + 15·71-s + 4·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.242·17-s − 0.229·19-s − 0.218·21-s − 1.04·23-s − 0.192·27-s + 1.11·29-s − 1.07·31-s − 0.174·33-s + 1.47·37-s − 0.780·41-s + 0.609·43-s − 1.02·47-s − 6/7·49-s − 0.140·51-s − 0.549·53-s + 0.132·57-s − 1.17·59-s + 1.53·61-s + 0.125·63-s + 0.488·67-s + 0.601·69-s + 1.78·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.59475132533716, −14.29614740163529, −13.76439447092745, −13.03563106900558, −12.65972252133609, −12.15032435422108, −11.56861290792117, −11.19580368852999, −10.73087375263945, −9.939831222550614, −9.764544275695851, −9.037525131070812, −8.309910185875744, −7.966753029469210, −7.361352089570598, −6.569174355354177, −6.329032532368488, −5.597533248116726, −5.056056151748506, −4.466820365613496, −3.903422535657871, −3.220524378779122, −2.350340341372709, −1.683009193379275, −0.9389493477724894, 0, 0.9389493477724894, 1.683009193379275, 2.350340341372709, 3.220524378779122, 3.903422535657871, 4.466820365613496, 5.056056151748506, 5.597533248116726, 6.329032532368488, 6.569174355354177, 7.361352089570598, 7.966753029469210, 8.309910185875744, 9.037525131070812, 9.764544275695851, 9.939831222550614, 10.73087375263945, 11.19580368852999, 11.56861290792117, 12.15032435422108, 12.65972252133609, 13.03563106900558, 13.76439447092745, 14.29614740163529, 14.59475132533716

Graph of the $Z$-function along the critical line