Properties

Label 2-5200-1.1-c1-0-94
Degree $2$
Conductor $5200$
Sign $-1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s + 2·11-s + 13-s − 2·17-s − 8·19-s − 23-s − 5·27-s + 9·29-s + 4·31-s + 2·33-s − 6·37-s + 39-s − 2·41-s + 9·43-s + 4·47-s − 7·49-s − 2·51-s − 13·53-s − 8·57-s − 6·59-s − 5·61-s + 6·67-s − 69-s − 2·71-s − 8·73-s − 17·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s + 0.603·11-s + 0.277·13-s − 0.485·17-s − 1.83·19-s − 0.208·23-s − 0.962·27-s + 1.67·29-s + 0.718·31-s + 0.348·33-s − 0.986·37-s + 0.160·39-s − 0.312·41-s + 1.37·43-s + 0.583·47-s − 49-s − 0.280·51-s − 1.78·53-s − 1.05·57-s − 0.781·59-s − 0.640·61-s + 0.733·67-s − 0.120·69-s − 0.237·71-s − 0.936·73-s − 1.91·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.185985696637849996584433007200, −7.08545620104147912961940481650, −6.36628873820725714821851039362, −5.90390522998923856025048093097, −4.68502280802899793951157972967, −4.17217871456396527860274650890, −3.17504311882563719684539065162, −2.47695434199269821946601113546, −1.50495458136540948839423452661, 0, 1.50495458136540948839423452661, 2.47695434199269821946601113546, 3.17504311882563719684539065162, 4.17217871456396527860274650890, 4.68502280802899793951157972967, 5.90390522998923856025048093097, 6.36628873820725714821851039362, 7.08545620104147912961940481650, 8.185985696637849996584433007200

Graph of the $Z$-function along the critical line