Properties

Label 2-51425-1.1-c1-0-21
Degree $2$
Conductor $51425$
Sign $-1$
Analytic cond. $410.630$
Root an. cond. $20.2640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 2·6-s − 2·9-s − 2·12-s + 4·13-s − 4·16-s + 17-s + 4·18-s + 7·19-s − 5·23-s − 8·26-s + 5·27-s + 8·29-s + 4·31-s + 8·32-s − 2·34-s − 4·36-s − 37-s − 14·38-s − 4·39-s − 4·41-s − 2·43-s + 10·46-s − 12·47-s + 4·48-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s − 2/3·9-s − 0.577·12-s + 1.10·13-s − 16-s + 0.242·17-s + 0.942·18-s + 1.60·19-s − 1.04·23-s − 1.56·26-s + 0.962·27-s + 1.48·29-s + 0.718·31-s + 1.41·32-s − 0.342·34-s − 2/3·36-s − 0.164·37-s − 2.27·38-s − 0.640·39-s − 0.624·41-s − 0.304·43-s + 1.47·46-s − 1.75·47-s + 0.577·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51425\)    =    \(5^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(410.630\)
Root analytic conductor: \(20.2640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51425,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78914340521171, −14.06953835343360, −13.84900768221296, −13.30123794774505, −12.50151166210327, −11.80965955286353, −11.58657910444428, −11.13624188407321, −10.49365132216563, −9.974824330572778, −9.728510746894006, −8.948120370137341, −8.390104708589225, −8.170857066654410, −7.575991447374349, −6.791669073994361, −6.349851168686921, −5.877446744665481, −5.013726072403165, −4.689275542443890, −3.562472790885838, −3.126467647054512, −2.214443836192780, −1.347796115844585, −0.8715364585234548, 0, 0.8715364585234548, 1.347796115844585, 2.214443836192780, 3.126467647054512, 3.562472790885838, 4.689275542443890, 5.013726072403165, 5.877446744665481, 6.349851168686921, 6.791669073994361, 7.575991447374349, 8.170857066654410, 8.390104708589225, 8.948120370137341, 9.728510746894006, 9.974824330572778, 10.49365132216563, 11.13624188407321, 11.58657910444428, 11.80965955286353, 12.50151166210327, 13.30123794774505, 13.84900768221296, 14.06953835343360, 14.78914340521171

Graph of the $Z$-function along the critical line